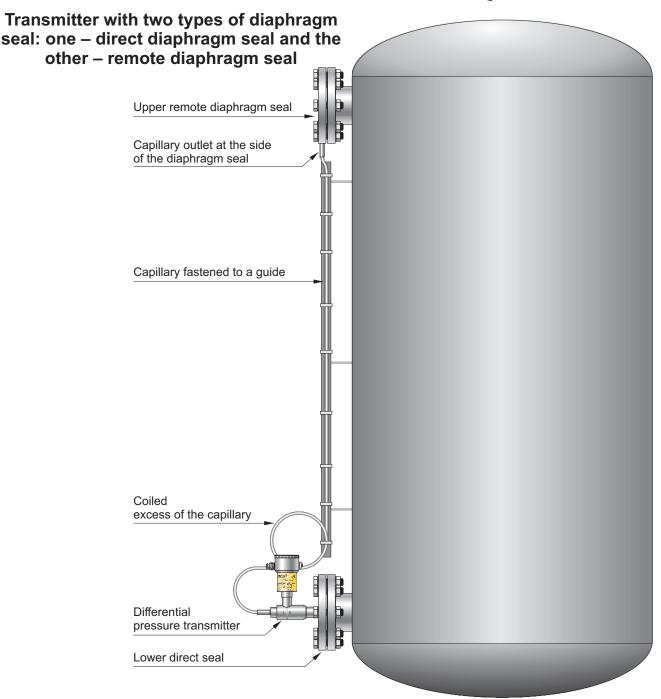


SMART DIFFERENTIAL PRESSURE TRANSMITTER WITH TWO DIAPHRAGM SEALS MODEL APR-2200ALW or APRE-2200

- √ 4...20 mA output signal + HART protocol
- ✓ Accuracy 0,1%
- ✓ Intrinsic safety certificate (ATEX, IECEx)
- ✓ Explosion proof certificate (ATEX, IECEx)
- √ Fully welded sensor guarantees tightness of oil system for many years
- ✓ Ability to configure measuring range locally


Example of a filter loss measurement

Recommendations

The version of the transmitter with two remote diaphragm seals is recommended for the measurement of pressure differences when the hydrostatic pressure of the manometric fluid in the capillaries (which depends on the vertical spacing of the seals) is significantly less than the measuring range of the transmitter. The best metrological results are obtained when the applied

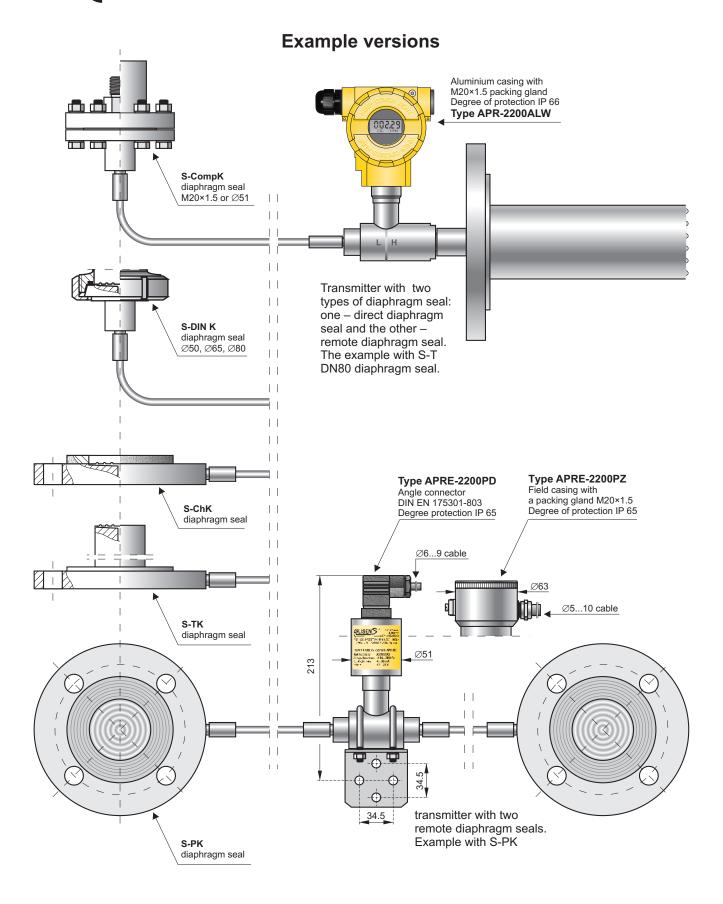
capillaries are identical, as short as possible, and terminated with identical seals. At such a configuration additional temperature errors, related to the remote sealing, affect both of the measurement chambers of the differential pressure transmitter in the same way, and thus cancel each other out.

Example of measurement of the level in a pressure tank

Recommendations

The transmitter with a direct diaphragm seal (connected to the positive measurement chamber) and a remote diaphragm seal (connected to the negative chamber) is recommended for hydrostatic measurements of: levels, densities, phase boundaries and pressure differences (with differentiated height of pulse source points*).

In such a configuration, at ambient temperature changes, two opposite phenomena appear concurrently.


Thermal expansion causes the change in the volume (and hence also the change in density) of the manometric fluid in the capillary, which results in a change of the hydrostatic pressure related to the vertical spacing of the seals.

This phenomenon is counteracted by the elastic reaction of the diaphragm of the upper diaphragm seal, which is displaced by the change in volume of manometric fluid. Based on tests and experiments, the Aplisens transmitters are provided with carefully selected seal diaphragms, which guarantee compensation of the errors resulted from the ambient temperature changes.

The best metrological results are obtained using assembly, which include DN 80, DN 100, A 109 and S-Comp diaphragm seals or S-Mazut, S-DIN and S-Clamp diaphragm seals with a diameter of at least 65 mm, where the length of the capillary is (1...1.3) × (vertical spacing of seals). It is recommended using identical diaphragm seals at the both upper and lower connection points.

^{*} The difference in height of pulse source points, at which the hydrostatic pressure of the manometric fluid is comparable to or greater than the range of the transmitter.

Note: The appropriate configuration of the complete set of pressure transmitter, diaphragm seals and capillaries, as well as the proper selection of manometric fluid, depends on several factors, including the physical and chemical properties, temperature range of the medium, the vertical spacing of the diaphragm seals, the measuring range, static pressure range, range of ambient temperatures and the technical specifications for mechanical connection of the diaphragm seals to the pressure devices.

Application and construction

The differential pressure transmitter is applicable to the measurement of pressure differences of: gases, vapours and liquids in cases where it is necessary to use seals and the pressure pulse source points may be several metres apart. Typical applications include the hydrostatic measurement of: levels in closed tanks, densities and phase boundaries, and the measurement of a filter loss, pressure differences between media in pasteurisers etc. The available range of the diaphragm seals allows measurement at great majority of media. The active element is a piezoresistant silicon sensor separated from the medium by a distance sealing system. The special design of the measuring unit means that it can withstand pressure surges and overloads of up to 40 bar. The electronic circuits are enclosed in a casing with a degree of protection IP 65 or IP66.

Configuration

The settings of the following metrological parameters can be changed:

- the units of pressure in which the range is configured,
- start and end points of the range, time constant,
- ♦ inverted characteristic (output signal 20 ÷ 4 mA).

Communication

The transmitter is configured and calibrated using a KAP-03 communicator, some other communicators (HART) or a PC using an HART/USB converter and Aplisens RAPORT 2 configuration software.

The data interchange with the transmitter enables the users the transmitter identification, as well as reading of the currently measured differential pressure value, output current and percent of range width.

Measuring ranges

Nominal	Minimum set range	Vertical spacing	Maximum set range width,	Static
measuring range		of diaphragm	considering the actual vertical spacing	pressure limit
(FSO)		seals	of the diaphragm seals (m)	
-160160 mbar	0,1 m H ₂ O	≤ 1,7 m	[1,6 + (vertical spacing of seals × 0,94)] m H ₂ O	40 bar
-0,50.5 bar	0,5 m H ₂ O	≤ 6 m	[5 + (vertical spacing of seals × 1,04)] m H ₂ O	40 bar
-1,62 bar	1,5 m H ₂ O	≤ 15 m	[20 + (vertical spacing of seals × 1,04)] m H ₂ O	40 bar
-1,616 bar	1 bar	≤ 15 m	16 bar	40 bar

CAUTION: The maximum vertical diaphragm seal spacing shown in the table applies to level measurement, ensuring that it is possible to set the zero point of the transmitter when the tank is empty. For measurements of density or phase boundaries (in the sugar, chemical or refinery industries) the vertical spacing of the diaphragm seals can be larger.

Metrological parameters

Accuracy $\leq \pm 0.1\%$ (FSO)

The other parameters as given in the sheet for the smart differential pressure transmitter APR-2000ALW/APRE-2000.

Sealing effect errors – as given in the relevant diaphragm seal sheet in chapter III (Diaphragm Seals), concerning the distance seal.

NOTE: The additional absolute zero error due to ambient temperature can be compensated by configuring the transmitter, seals and capillaries in accordance with the recommendations on pages II/ 20 and II/ 21.

Electrical parameters – as given in the sheet for the APR-2000ALW/APRE-2000 differential pressure transmitter.

Operating conditions

Operating temperature range (ambient temperature) -25...85°C APR-2200ALW/Exia and APRE-2200/Exia -25...80°C APR-2200ALW/Exd -25...75°C

Medium temperature range – as given in the appropriate diaphragm seal sheet (remote seal)

Special versions, certificates:

Exia – ATEX Intrinsic safety

Exd - ATEX explosion proof

100 bar, 160 bar – static pressure limit – 100 bar or 160 bar Non-standard basic range – on request

Others

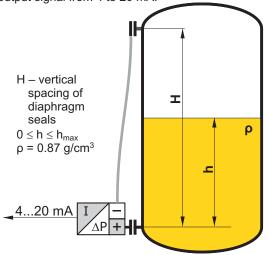
Ordering procedure APR-2200ALW

Model		Code		Description			
APR-2200				Smart differential pressure transmitter			
Oneign autout signal	/ALW	/ALW		Aluminum housing, IP66, with display, output 4-20mA + Hart			
Casing, output signal	/ALW/SS		Stainles	s steel housing, IP66, with display, output	4-20mA + Hart		
					€ x>	II 1/2G Ex ia IIC T4/T5 Ga/Gb	
Versions, certificates		/Exia		IECEx	Ex ia IIC T4/T5 Ga/Gb		
		/Exia (Da)		€x IECEx	II 1/2G Ex ia IIC T4/T5 Ga/Gb II 1D Ex ia IIIC T105°C Da I M1 Ex ia I Ma (version with SS housing Ex ia IIC T4/T5 Ga/Gb Ex ia IIIC T105°C Da Ex ia I Ma (version with SS housing))	
		/Exd		ξχ IECEx	II 1/2G Ex ia/db IIC T6/T5 Ga/Gb II 1/2D Ex ia/tb IIIC T85°C/T100°C Da/DI I M2 Exd ia I Mb (version with SS housin Ex ia/db IIC T6/T5 Ga/Gb		
	/Exd (2G)		€x IECEx	II 2G Ex ia/db IIC T6/T5 Gb II 2D Ex ia/tb IIIC T85°C/T100°C Db Ex ia/db IIC T6/T5 Gb Ex ia/t IIIC T85°C/T100°C Db	Packing gland available on request		
		/SA		Surge arrester for Exia version			
more than one option		/100 bar/160 bar//160 far//////////////////////////////////		Static pressure 100 bar			
is available				Static pressure 160 bar			
				Protection	on class IP67	T	
		, , , , , ,			100 10	Range	Min. set range
Manainal mananaina mana				-160+160 mbar (-16+16 kPa) -0,5+0,5 bar (-50+50 kPa)		0,1 mH2O 0.5 mH2O	
Nominal measuring rang	je	/-0,5÷0,5 bar/-1.6÷2 bar		-1,6÷2 bar (-160÷200 kPa)		1.5 mH2O	
		. , .	, 1,0 2 20		-1,6÷16 bar (-160÷1600 kPa)		1 bar
Measuring set range /÷ [required units]				Calibrated range in relation to 4mA and 20mA output			
Process connections //(+)			Direct di transmit	aphragm seal or remote diaphragm seal n ter- code as given in the relevant diaphrag	nounted on the (+) side of the		
					Capillary length on (+) side of transmitter Remote diaphragm seal mounted on the (-) side of the transmitter – code as given in		
		/(-)		the relevant diaphragm seal sheet			
			K=		Capillary length on (-) side of transmitter		
Electrical connection (without marking)		arking)	Packing gland M20x1,5				
/US				Thread 1/2"NPT Female			
Accessories			/F	125	Mounting bracket for 1" pipe, mat. Stainless Steel		
Other specification				/	Description of required parameters (e.g. IP66/67)		

Ordering procedure APRE-2200

Model	Code		Code	Description		
APRE-2200				Smart differential pressure transmitter		
	/PD.			Housing IP65 with DIN EN 175301-803 connector, without display, output 4–20mA + Hart, packing gland M20x1,5 304SS housing, IP66/IP67, without display,		
Casing, output signal	/PZ316			output 4–20mA + Hart packing gland M20x1,5 316SS housing, IP66/IP67, without display, output 4–20mA + Hart packing gland M20x1,5		
Versions, certificates /Exia				II 1/2G Ex ia IIC T4/T5/T6 Ga/Gb (Ex) II 1D Ex ia IIIC T110°C Da I M1 Ex ia I Ma		
more than one option /100 bar			Static pressure 100 bar			
is available /160 bar			Static pressure 160 bar			
				Range	Min. set range	
Nominal measuring range		/-160÷160 mbar		-160÷160 mbar (-16÷16 kPa)	0,1 mH2O	
		/-0,5÷0,5 bar		-0,5÷0,5 bar (-50÷50 kPa)	0,5 mH2O	
		/-1,6÷2 bar		-1,6÷2 bar (-160÷200 kPa)	1,5 mH2O	
		/-1,6÷16	bar	-1,6÷16 bar (-160÷1600 kPa)	1 bar	
Measuring set range	Measuring set range /÷ [required units]		equired units]	Calibrated range in relation to 4mA and 20mA output		
			/(+)	Direct diaphragm seal or remote diaphragm seal mounted on the $(+)$ side of the transmitter- code as given in the relevant diaphragm seal sheet		
Process connections			K=	Capillary length on (+) side of transmitter		
1 Toccas connections		/(-)		Remote diaphragm seal mounted on the (-) side of the transmitter – code as given in the relevant diaphragm seal sheet		
		K=		Capillary length on (-) side of transmitter		
Accessories /FI25			/FI25	Mounting bracket for 1" pipe, mat. Stainless Steel		
Other specification //				Description of required parameters		

To simplify the mathematical operations we introduce the density coefficient of the medium $X\rho$.


$$X\rho = \frac{\rho_{\text{medium}} \left[g/\text{cm}^3 \right]}{\rho_{\text{water at 4°C}} \left[g/\text{cm}^3 \right]}$$

Since the density of water at 4° C is 1 g/cm³, the **density coefficient Xp** is numerically equal to the **density of the medium expressed in g/cm³**. To determine the hydrostatic pressure of a column of liquid in mm H₂O, it is sufficient to multiply the height of the column h [mm] by the density coefficient of the liquid Xp. Since it is easy to determine the hydrostatic pressure in mm H₂O and the transmitter can be configured in those units, in the descriptions of measurement methods given below we will make use of pressures expressed in mm H₂O and the density coefficient Xp.

Configuration of the transmitter to measure the level of liquid in a tank

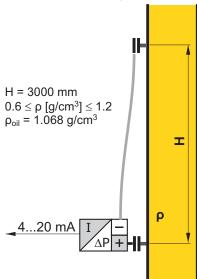
The measurement task:

To convert a variation in the level of a liquid with density ρ = 0.87 g/cm³ between 0 and h_{max} to a variation in the output signal from 4 to 20 mA.

- 1. Install the transmitter in its working position on an empty tank.
- 2. Make the electrical connections of the transmitter, providing for the ability to use HART communication.
- 3. Connect the KAP-03 communicator, identify the transmitter and select the "configuration" function.

- On the configuration menu select the "Reranging" procedure.
- 5. On the "Reranging" menu:
 - a) change the units of measurement to mm H₂O at 4°C;
 - b) enter the values for the start ($X\rho \times h_{min}$ [mm]) and end ($X\rho \times h_{max}$ [mm]) of the measurement range, namely 0 and (0.87 h_{max} [mm]) respectively;
 - c) to compensate for the hydrostatic pressure of the manometric fluid, the start of the measurement range should be set using regulated pressure; when subject to the action of only the manometric fluid (empty tank) the transmitter will shift the start and end-points of the range, compensating for the value of that pressure.

When the transmitter has been configured in this way it is ready to be used to carry out the given measurement task.


If it is not possible to empty the tank to configure the transmitter, the hydrostatic pressure of the manometric fluid should be calculated by multiplying the vertical spacing of the diaphragm seals by the density coefficient of the oil in the capillaries. This pressure should be taken into account when entering the values for the start and end of the range:

Start [mm
$$H_2O$$
] = $-H$ [mm] \times Xp_{oil}

End
$$[mm H_2O] =$$

 ρ_{oil} for DC-550 oil is equal to 1.068 g/cm³ ρ_{oil} for AK-20 oil is equal to 0.945 g/cm³

Configuration of the transmitter to measure density of liquids

The measurement task:

To convert a variation in liquid density from $\rho_{\text{min}}=0.6~\text{g/cm}^3$ to $\rho_{\text{max}}=1.2~\text{g/cm}^3$ to a variation in the output signal from 4 to 20 mA, with the vertical spacing of the diaphragm seals equal to H = 3000 mm. The sealing system is filled with DC-550 oil with density $\rho_{\text{oil}}=1.068~\text{g/cm}^3.$

- 1. Calculate the value of the start of the range as follows: $H_{[mm]} \times (X\rho_{min} - X\rho_{oil}) =$ $= 2000 \times (0.6 - 1.068) = 1404 \text{ fmm H Ol}$
 - $= 3000 \times (0.6 1.068) = -1404 \text{ [mm H}_2\text{O]}$
- 2. Calculate the value of the end of the range as follows: $H_{\text{[mm]}} \times (X\rho_{\text{max}} X\rho_{\text{oil}}) =$ = 3000 × (1.2 1.068) = 396 [mm H₂O]
- 3. Set the zero point of the transmitter with the diaphragm seals positioned at the same level.
- 4. Install the transmitter in its working position.
- Make the electrical connections to the transmitter, providing for the possibility of using HART communication.

- 6. Connect the KAP-03 communicator, identify the transmitter and select the "configuration" function.
- On the configuration menu select "Reranging" procedure.
- 8. On the "Reranging" menu:
 - a) change the measurement units to mm H₂O at 4°C;
 - b) enter the calculated values for the start (-1404) and end (396) of the range.

When the transmitter has been configured in this way it is ready to be used to carry out the given measurement task.


Note: If it is possible to fill the space between the seals with a liquid whose density corresponds to the start of the measurement range, the start of the range of the transmitter can be set using regulated pressure.

Measurement of phase boundary

The height of the phase boundary of liquids of different densities is determined by measuring the average density of the medium between the seals.

Example:

Calculate the measurement range start and end points for an APRE-2200 transmitter configured to measure phase boundary height in the range 0–1000 mm between liquids of density $\rho_1 = 0.7$ g/cm³ and $\rho_2 = 1.0$ g/cm³, where the vertical spacing of the seals H = 1600 mm. The sealing system uses DC-550 oil with a density of 1.068 g/cm³.

To determine the start of the measurement range, calculate the pressure difference at the transmitter when the tank is filled with the lighter liquid only:

$$1600 \text{ [mm]} \times (0.7 - 1.068) = -588.8 \text{ [mm H}_2\text{O]}$$

To determine the end-point of the range, add the increase in pressure resulting from the appearance of a 1 metre column of the heavier liquid:

$$-588.8 \text{ [mm H}_2\text{O]} + (1.0 - 0.7) \times 1000 \text{ [mm]} =$$

= $-288.8 \text{ [mm H}_2\text{O]}$

Additional remarks

The settings of the transmitter can be adjusted with reference to laboratory results from density measurements carried out on samples of the liquid being measured. This is most often necessary when the measurement takes place in a pipeline segment where the flow velocity of the measured liquid reaches several m/s.

Increasing the vertical spacing of the diaphragm seals widens the range and often improves measurement accuracy.

In planning the spacing of the diaphragm seals, ensure that the pressure difference at the transmitter lies within the basic range.

The maximum vertical spacing of the diaphragm seals (H) depends on the transmitter's basic range and the boundary values for the density of the measured liquid $(\rho_{min}; \rho_{max})$.

If $\rho_{min} < \rho_{oil} < \rho_{max}$ the seal spacing H should satisfy the following conditions:

$$H [mm] \le \frac{\text{lower boundary of range } [mm \ H_2O]}{X_{\rho_{min}} - X_{\rho_{gl}}}$$

$$\text{H [mm]} \leq \frac{\text{upper boundary of range [mm H}_2\text{O}]}{X\rho_{\text{max}} - X\rho_{\text{oil}}}$$

Example:

Determine the maximum vertical spacing of the seals for the APRE-2200 / -10...10 kPa transmitter when measuring the density of liquid between 0.6 and 1.2 g/cm³. The sealing system uses AK-20 silicone oil with a density of 0.945 g/cm³.

The lower boundary of the range of the transmitter is $-10 \text{ kPa} = -1020 \text{ mm H}_2\text{O}$

$$H[mm] \le \frac{-1020}{0.6 - 0.945} \implies H[mm] \le \frac{-1020}{-0.345} \implies H[mm] \le 2957$$

The upper boundary of the range of the transmitter is $+10 \text{ kPa} = 1020 \text{ mm H}_2\text{O}$

$$H [mm] \le \frac{1020}{1.2 - 0.945} \Rightarrow H [mm] \le \frac{1020}{0.255} \Rightarrow H [mm] \le 4000$$

In the example, both conditions are satisfied when the spacing of the seals is not more than 2957 mm.