

Product information **Flow** – **rotor, inline model**

Product information Flow - rotor, Inline

Characteristics

System

• Flow rotor

Evaluation

· Display, Switching, Measurement

Nominal widths

DN 8..40

Range

• 0,1..100 l/min

Media

• Water, Aqueous emulsions, Aggressive media

Pressure resistance

• Max. 100 bar

Medium temperature

○ -20..+200 °C

Function and benefits

- Uncomplicated measurement of flows
- No magnets with the plastic types (with inductive sensor)
- $\circ\,$ Modular system in mechanics and electronics
- Long service life due to high-quality ceramic axle and special plastic bearing
- Output signal PNP, NPN, push-pull or NAMUR
- Run-in and run-out sections are not necessary
- Intrinsically safe behaviour
- Modular construction with the widest range of connection systems
- male and female connections
- Options with stop valve, filter, flow constants in the connections

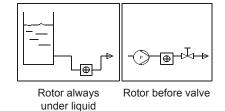
The sensor is comprised of an impeller, which is set in rotation by the flow speed. The rotation is proportional to the flow value per time. The recording of the rotation speed takes place through various sensor systems, due to the various materials of the housing. With some sensors an LED indicator is integrated in the sensor, which primarily signals by blinking on startup of the sensor that the rotor inside is turning.

Benefits of installation

The sensors are installed in the pipework with the help of the rotating adapter pieces. If the adapter is separated from the body in the process, it must be ensured that the adapter and the mount are clean before re-inserting (briefly run your finger through the mount hole of the housing). Carefully install the adapter (by turning) in the housing in order to avoid damaging the O-ring. Run-in and run-out sections are not necessary with this flow sensor. However, it must be ensured that the flow sensor is always filled with medium and re-

Members of GHM GROUP: GREISINGER | HONSBERG | Martens | IMTRON | Setto III | VAL.CO

Applications


- Industrial metering and monitoring technology
- Welding cooling
- Machine tools for emulsion control
- Laser coolant monitoring
- Monitoring of radio or x-ray tubes

mains filled. Any arbitrary installation position is possible, however, the best-possible bleeding position should be selected (flow from left to right or from bottom to top).

Attention: Air bubbles have a significant, negative impact of the measurement results.

The valve should always be installed after the sensor for emptying processes. Factor in a start-up time (approx. 0.5 sec) and an after-run time (approx. 3 sec).

Installation method:

All converters which accept a frequency signal as an input signal (see frequency range of the various areas) can be combined with a electronic evaluation. See also device overview.

Programmability of parameters

All RR.. can be combined with the intelligent sensor families OMNI, FLEX and LABO. These sensors have a microcontroller which enables a multitude of parameter changes. By standard, all three main electronics have the capability of making local changes. In addition, a device configurator (ECI-1) can be used to change all saved parameters of a device at any time, if desired or necessary.

LABO-RR ..-I/U/F/C/S

Pulse programming on pin 2:

Apply the supply voltage level for one second and save the current value as the final value (for analog outputs) or as a switching value (for limit value switches).

FLEX-RR..

Programming with magnet clip:

Hold the magnet to the marking for 1 second and save the present value as the final value (for analog outputs) or as a switching value (for limit value switches).

OMNI-RR..

Programming with magnet ring:

With the aid of the display and of the movable ring, numerous parameters can be conveniently set on the spot.

ECI-1

If required, all parameters can be set at any time on all intelligent sensors, using the ECI-1 device configurator.

Universal-Schaltausgänge

Die Push-Pull-Transistorausgänge ermöglichen einfachste Installation. Sie installieren den Ausgang wie einen NPN-Schalter, und es ist ein NPN-Schalter, Sie installieren den Ausgang wie einen PNP-Schalter, und es ist ein PNP-Schalter, ohne Programmierung oder Drahtbrücken.

Kurzschlussfestigkeit und Verpolungssicherheit sind sichergestellt, und bei einer OMNI-Elektronik wird zusätzlich eine Überlast oder ein Kurzschluss im Display angezeigt.

Device overview

	_	_		C)	Je		Outpu	t signal	
Device	Connection material	Range I/min	Pressure resistance in bar	Medium temperature	Supply voltage	Display	Switching	Measuring	Page
РО	PPS	0,1100	PN 16	060 °C	-	analog	-	-	6
WR1	Brass / stainless steel	0,7100	PN 16	20+100 °C	-	analog	-	-	7
FR	Gunmetal	2,565	PN 16	0100 °C	-	analog	-	-	8
RM	Gunmetal / stainle	0,760	PN 16	0200 °C	-	analog	-	-	9
RRI	PPS	0,1100	PN 16	060 °C	1030 V DC	Signal LED	-	Frequency	10
RRH	Stainless steel /brass nickelled	0,1100	PN 100	060 °C (100 °C)	1030 V DC	Signal LED	-	Frequency	12
LABO-RRIS	PPS	0,1100	PN 16	060 °C	1030 V DC	Signal LED	1 x Push-Pull	-	14
LABO-RRII	PPS	0,1100	PN 16	060 °C	1030 V DC	Signal LED	-	420 mA	17
LABO-RRIU	PPS	0,1100	PN 16	060 °C	1030 V DC	Signal LED	-	010 V	17
LABO-RRIF	PPS	0,1100	PN 16	060 °C	1030 V DC	Signal LED	-	Frequency 02 kHz	17
LABO-RRIC	PPS	0,1100	PN 16	060 °C	1030 V DC	Signal LED	-	Pulse / quantity	17
LABO-RRHS	Stainless steel / brass nickelled	0,1100	PN 100	060 °C (100 °C)	1030 V DC	Signal LED	1 x Push-Pull	-	21
LABO-RRHI	Stainless steel / brass nickelled	0,1100	PN 100	060 °C (100 °C)	1030 V DC	Signal LED	-	0/420 mA	24
LABO-RRHU	Edelstahl / Messing vernickelt	0,1100	PN 100	060 °C (100 °C)	1030 V DC	Signal LED	-	010 V	24
LABO-RRHF	Stainless steel / brass nickelled	0,1100	PN 100	060 °C (100 °C)	1030 V DC	Signal LED	-	Frequency 02 kHz	24
LABO-RRHC	Stainless steel / brass nickelled	0,1100	PN 100	060 °C (100 °C)	1030 V DC	Signal LED	-	Puls / Menge	24
FLEX-RRI	PPS	0,1100	PN 16	060 °C	1830 V DC	Signal LED	1 x Push-Pull		28

Device overview

					Ø		Outpu	t signal	
Device	Connection material	Range l/min	Pressure resistance in bar	Medium temperature	Supply voltage	Display	Switching	Measuring	Page
FLEX-RRH	Stainless steel / brass nickelled	0,1100	PN 100	060 °C (100 °C)	1830 V DC	Signal LED	1 x Push-Pull	0/420 mA or 010 V and Frequenc	33
OMNI-RRI	PPS	0,1100	PN 16	060 °C	1830 V DC	Graphic LCD illuminated transflective and signal LED	1 x Push-Pull	0/420 mA or 010 V	38
OMNI-RRH	Stainless steel / brass nickelled	0,1100	PN 100	060 °C	1830 V DC	Graphic LCD illuminated transflective and signal LED	2 x Push-Pull	0/420 mA or 010 V	42
Counter- OPTION-C	Preset Counter	r with external re	set facility, ant	-complementa	ry switching ou	itputs and actu	al value dis	play.	46
Counter- OPTION-C1	Instantaneous	value display wit	th analog outpu	ıt, pulse output	and volume to	otalizer.			50
ECI-1	All LABO, FLE	X, and OMNI pa	rameters can b	e set or modifi	ed using the E	CI-1 configurat	or.		53
ESA1	PA6.6								54
ESK2	PA6.6							56	
ESK3	PA6.6							58	
Options	 LABO transmitter – Temperature up to 150 ° OMNI – Tropical model 							60	
Accessories	 Type ZV / ZE KB (Rour OMNI-TA (F OMNI-remo 	nd plug connecto Panel meter)	or 4/5-pin)						61

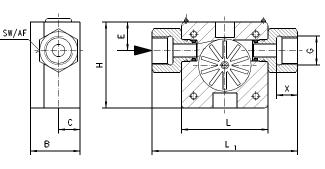
Errors and technical modifications reserved.

Flow Indicator PO

- Simple flow display •
- **Rotatable connections**
- Removable connections thanks to clip-fitting
- Different connection possible on each side •

Characteristics

Mechanical flow indicator, for fluid media, with rotor for quantitative flow display. The rotor turns in proportion to the flow.


Technical data

Nominal width	DN 10, DN 25				
Process connection	female thread G $^{3}/_{8,}$ G 1				
Display range	0.1100 l/min	for details see			
Q _{max} .	to 100 l/min	table "Ranges and weights"			
Pressure resistance	PN 16 bar				
Medium temperature	060 °C				
Ambient temperature	060 °C				
Materials medium-contact	PPS, PSU Ultrason, PVDF, ceramic Zr0 ₂ -TZP, Iglidur X, FKM				
Medium	water (oils have a tendency to a higher running-up value)				
Weight	see table "Ranges and weights"				
Installation location	as desired, except for inwards flow from above				

Ranges and weights

G	Types	PN	Range	Weight
		bar	I/min H₂O	kg
	PO-010GVA020		0.1 - 1.5	
G ³ / ₈	PO-010GVA050	16	0.2 - 10.0	0.1
	PO-010GVA070		0.4 - 12.0	
	PO-025GVA080		2.0 - 30.0	
G 1	PO-025GVA120	16	3.0 - 60.0	0.4
	PO-025GVA160		4.0 - 100.0	

Dimensions

G	н	L	L1	в	С	Е	SW	Х
G ³ / ₈	50	50	84	29	12.5	16.5	22	12
G 1	70	70	110	53	23.0	27.5	38	18

Handling and operation

Installation

Installation location as desired (please ensure best possible venting).

Because of the rotatable connections, no further adapter is required.

Ordering code

PC	1. D-	2. G	3. 4. 5. 6.		
O =	Option				
1.	Nominal	wic	lth		
	010		DN 10 – G ³ / ₈		
	025		DN 25 – G 1		
2.	Mechanic	cal	connection		
	G		female thread		
3.	Connecti	on	material		
	V		PVDF		
	М	О	CW614N		
	К	О	stainless steel		
4.	Housing	ma	terial		
	A		PPS with transparent polysulfone cover		
5.	Inwards f	flov	v drilling		
	020		Ø 2	•	
	050		Ø 5	•	
	070		Ø 7	•	
	080		Ø 8	•	
	120		Ø 12 •		
	160		Ø 16	•	
6.	Seal mate	eria	l		
	V		FKM		
	E	О	EPDM		
	N	О	NBR		

Flow Indicator WR1-...GM / K

- Internal wiper provides ability to clean the glass without . removing the device.
- Sliding bearing made from PEEK for liquids, or grease-free ball bearing for air and gases
- Rotor visible from 360 °

Characteristics

Mechanical flow indicator, for fluid media, with rotor for quantitative flow display. The rotor turns in proportion to the flow. Robust construction in brass or stainless steel.

Technical data

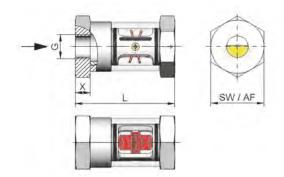
Nominal width	DN 840				
Process	female thread G ¹ / ₄ G 1 ¹ / ₂				
connection					
Display range	0.7700 l/min	for details see			
Q _{max} .	to 700 l/min	table "Ranges"			
Pressure	PN 16 bar				
resistance					
Medium	0+100 °C				
temperature					
Ambient	0+70 °C				
temperature					
Materials	Brass construction:	Stainless steel			
medium-contact	CW614N nickelled,	construction:			
	borosilicate glass, NBR	1.4305, borosilicate glass, FKM			
	DN 825: POM red	gidos, i raw			
	DN 3240: Nylon whit	A			
	for fluids: PEEK	.0			
	for gases: Steel 100 C	CR 6 chrome coated			
Medium	water, gases (oils hav	ve a tendency to a			
	higher running-up value)				
Weight	see table "Dimensions and weights"				
Installation	as desired, except for	inwards flow from			
location	above				

Ranges

Fluids

G	Start	rt-up quantity for rotor, I/min		Q _{max.} recommended	Types	
	H₂O	40 mm²/s	41150 mm²/s			
G ¹ / ₄	0.7	1.5	2.7	4	WR1-008G.W	
G ³ / ₈	0.8		2.8	8	WR1-010G.W	
G ¹ / ₂	1.4	1.8	3.2	12	WR1-015G.W	
G ³ / ₄		2.7	5.9	25	WR1-020G.W	
G 1	1.7	3.0	7.0	40	WR1-025G.W	
G 1 ¹ / ₄	8.0	5.9	7.9	80	WR1-032G.W	
G 1 ¹ / ₂		7.3		100	WR1-040G.W	

Special ranges are available.


Air / gases

G **Running-up amount** Q_{max.} Types for rotor recommended l/min 1 bar abs 20 °C G 1/4 18 60 WR1-008G.G G ³/₈ 20 WR1-010G.G 150 G 1/2 25 250 WR1-015G.G G ³/₄ 25 250 WR1-020G.G G 1 35 350 WR1-025G.G G 1¹/₄ 60 600 WR1-032G.G G 11/2 70 700 WR1-040G.G

Special ranges are available.

Dimensions and weights

G	Types	L	SW	X	Weight kg
G ¹ / ₄	WR1-008G.	71	36	9	0.35
G ³ / ₈	WR1-010G.				
G ¹ / ₂	WR1-015G.	86	46	13	0.65
G ³ / ₄	WR1-020G.	94		16	
G 1	WR1-025G.	104			
G 1 ¹ / ₄	WR1-032G.	120	65	19	1.60
G 1 ¹ / ₂	WR1-040G.	130		20	1.70

4.

Ordering code

	1.	2.	3.
WR1 -		G	

Nominal v	width			
008	DN 8-G ¹ / ₄			
010	DN 10 - G ³ / ₈			
015	DN 15 - G ¹ / ₂			
020	DN 20 - G ³ / ₄			
025	DN 25 - G 1			
032	DN 32 - G 1 ¹ / ₄			
040	DN 40 - G 1 ¹ / ₂			
Process of	connection			
G	female thread			
Connectio	on material			
Μ	brass			
K	stainless steel			
For medium				
W	fluids			
G	air and gases			
	008 010 015 020 025 032 040 Process o G Connection K For media W			

Options

- smaller start-up quantities / special diaphragm
- Wiper seal made from EPDM

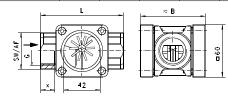
Flow Indicator FR-...GR

- Rotor on both sides directly behind natural glass •
- Installation location as desired

Characteristics

Mechanical flow indicator, for fluid media, with twin rotor for quantitative flow display. The rotor turns in proportion to the flow. Robust construction in red bronze/brass

Technical data


Nominal width	DN 1525				
Process	female thread G 1/2G	1			
connection	_				
Display range	2.565 l/min	for details see			
Q _{max.}	to 65 l/min	table "Ranges"			
Pressure resistance	PN 16 bar				
Medium	0+100 °C				
temperature					
Ambient temperature	0+100 °C				
Materials medium-contact	Rg 5, CW614N, soda lime glass, POM Klingersil C4400				
Medium	water (oils have a tendency to a higher running-up value)				
Weight	see table "Dimensions and weights"				
Installation location	as desired, except for inwards flow from above				

Ranges

G	Types	Running-up amount for rotor I/min H ₂ O	Q _{max.} recommended
G ¹ / ₂	FR-015GR	2.5	25
G ³ / ₄	FR-020GR	3.0	45
G 1	FR-025GR	5.0	65

Dimensions and weights

G	Types	L	В	SW	Х	Weight kg
G ¹ / ₂	FR-015GR	85	68	34	14	1.20
G ³ / ₄	FR-020GR					1.10
G 1	FR-025GR	95	74	40	16	1.25

Ordering code

	1.	2.	3.
FR -		G	R

1.	Nominal	Nominal width				
	015	DN 15 - G ¹ / ₂				
	020	20 DN 20 - G ³ / ₄				
	025	DN 25 - G 1				
2.	Process	Process connection				
	G	female thread				
3.	Connection material					
	R	red bronze				

Members of GHM GROUP: GREISINGER | HONSBERG | Martens |

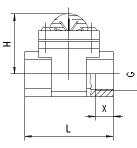
Flow Indicator RM

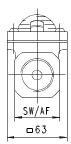
- Good view of rotor •
- High temperature resistance
- Dome form •

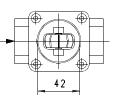
Characteristics

Mechanical flow indicator, for fluid media, with rotor for quantitative flow display. The rotor turns in proportion to the flow. Robust construction using red bronze / brass or stainless steel.

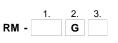
Technical data


Nominal width	DN 8.0.25					
Process connection	female thread G ¹ / ₄ G	i 1				
Display range	0.760 l/min	for details see				
Pressure loss	up to 0.7 bar	table "Ranges"				
Q _{max.}	to 60 l/min	table Tranges				
Pressure resistance	PN 16 bar					
Medium temperature	0+100 °C water 0+200 °C oils					
Ambient temperature	0+200 °C					
Materials medium-contact	red bronze model: Rg, CW614N, borosilicate glass, 1.4301, PPS, Klingersil C-4400	Stainless steel construction: 1.4408, CW614N, borosilicate glass, 1.4301, PPS Klingersil C-4400				
Medium	water (oils have a tendency to a higher running-up value)					
Weight	see table "Dimensions	s and weights"				
Installation location	as desired, except for above	as desired, except for inwards flow from				


Ranges


G	Types	Running-up amount for rotor I/min H ₂ O	Q _{max.} re- com- men ded	Pressure loss bar at Q_{max} . H ₂ O
G ¹ / ₄	RM-008G.	0.7	8	0.20
G ³ / ₈	RM-010G.	0.8	10	0.15
G ¹ / ₂	RM-015G.	1.0	20	0.40
G ³ / ₄	RM-020G.	1.2	40	0.25
G 1	RM-025G.	1.5	60	0.70

Dimensions and weights


G	Types	L	Η	SW	X	Weight kg
G ¹ / ₄	RM-008G.	76	53	28	12	0.70
G ³ / ₈	RM-010G.				16	0.65
G ¹ / ₂	RM-015G.				14	
G ³ / ₄	RM-020G.	89	66	45	18	1.25
G 1	RM-025G.					1.20

Ordering code

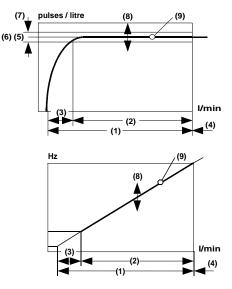
O=Option

1.	Nominal width				
	008	DN 8-G ¹ / ₄			
	010	DN 10 - G ³ / ₈			
	015	DN 15 - G ¹ / ₂			
	020	DN 20 - G ³ / ₄			
	025	DN 25 - G 1			
2.	Process of	connection			
	G	female thread			
3.	Connection material				
	R	red bronze			
	КО	stainless steel			

Members of GHM GROUP: GREISINGER | HONSBERG | Martens | IMTRON | / Jelta - IVAL.CO

Flow Transmitter RRI

- Uncomplicated measurement of flow rates
- No magnets; uses inductive sensor
- Long working life thanks to high quality ceramic axis and special plastic bearing
- Run-in and run-out sections are not necessary.
- Modular construction with various connection systems
- Plug-in and rotatable connections •
- **Output signal PNP or NPN**
- Intrinsically safe behaviour
- Optionally, non-return valve, filter, constant flow rate • device in the connections


Characteristics

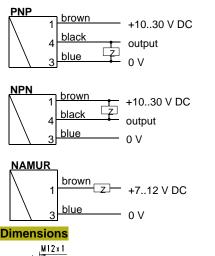
The flow meter consists of a spinner which is rotated by the flowing medium. The rotor's rotational speed is proportional to the flow volume per unit time. The rotor is fitted with stainless steel clamps (optionally titanium or Hastelloy®). An inductive proximity switch records the rotational speed, which is proportional to the flow rate.

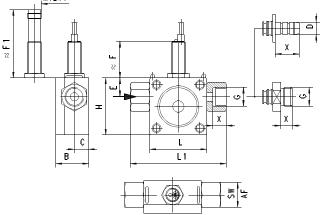
Technical data

-					
Sensor	inductive				
Nominal width	DN 10 (RRI-010)				
	DN 25 (RRI-02	5)			
Mechanical Connection	connections, c	³ / ₈ Å, G 1 Å			
Pressure resistance	PN 16 bar				
Medium temperature	060 °C				
Materials medium-contact	Housing	PPS, PVDF (Fortron 1140L4)			
	Rotor	PVDF			
	Clamps	1.4310 optionally: titanium or Hastelloy [®]			
	Bearing	Iglidur X			
	Axis	ceramic Zr02-TZP			
	Seal	FKM			

Materials, non- medium-contact	PVC cable, 1.4305, 1.4301, CW614N nickelled				
Current consumption at rest	10 mA / NAMUR max. 7 mA				
Output current max.	200 mA / NAMUR max. 7 mA				
Electrical connection Sensor	cable 2 m or for round plug connector M12x1, 4-pole				
Resistant to short circuits	yes				
Reversal polarity protected	yes				
Ingress protection	IP 67				
Weight	RRI-010 approx. 0.2 kg				
	RRI-025 approx. 0.5 kg				
Conformity	CE				

- (1) Complete metering range
- (2) Specific metering range
- (3) Start-up range
- (4) Extended operating range, increased wear, Dp > 0.5 bar
- (5) Pulses / litre (details on label)
- (6) Average pulses / litre
- (7) Tolerance ± 3 % of the measured value
- (8) Scatter ±10 % of the pulses / litre value (5) in the batch
- (9) Reproducibility (±1 % of the full scale value) is the repeat accuracy of a frequency, relative to l/min
- (10) Max. frequency, related to the relevant metering range up to approx. 0.5 bar pressure drop across the flow meter


Types	Q _{max}	Me	etering range	pulses / litre	frequency	
RRI-	l/min H₂O		I/min H ₂ O		Hz EW	
		(1)	(2)	(6)	(10)	
010020	1.8	0.1 1.5	0.5 1.5	0.10.5	10200	255
010050	12.0	0.2 10.0	2.0 10.0	0.22.0	3345	558
010070	14.4	0.4 12.0	2.0 12.0	0.42.0	1755	351
025080	36.0	2.0 30.0	3.0 30.0	2.03.0	1216	608
025120	72.0	3.0 60.0	5.0 60.0	3.05.0	607	607
025160	120.0	4.0100.0	6.0100.0	4.06.0	252	420


The measured values were determined using a standing sensor in a horizontal flow of water at 25 °C.

Members of GHM GROUP: GREISINGER | HONSBERG | Martens |

Wiring

Threaded connection

G	DN	Types	H/L	L1	В	С	Е	F	F1	Х	SW
G ³ / ₈	10	RRI-010G	50	84	29	12.5	16.5	32	60	12	22
G ³ / ₈ A		RRI-010A								14	
G 1	25	RRI-025G	70	110	53	23.0	27.5	27	55	18	38
G1A		RRI-025A		122							
NPT thre	VPT threads on request										

Hose nozzle connection

D	DN	Types	H/L	L1	в	С	Е	F	F1	Х
Ø11	10	RRI-010T	50	96	11	12.5	16.5	32	60	21
Ø30	25	RRI-025T	70	176	30	23.0	27.5	27	55	45
Custom	specif	ic connector	s on re	quest						

Handling and operation

The Rototron device is installed in the pipework with the aid of the rotatable adapter pieces. If necessary, the adapters can be removed from the body of the housing after the stainless steel clips have been removed from the housing. Before reinstalling, it should be ensured that both the adapter with the O-ring and the sealing surface in the body are clean and undamaged. The adapters should be fitted carefully in the housing (it is best to turn them), so that the O-ring is not damaged.

With this flow sensor, there is no need for run-in and run-out sections. However, it should be ensured that the flow sensor is at all times filled with medium. Any preferred installation position is possible, but the best possible venting position should be chosen (rotor axis horizontal, flow horizontal or from bottom to top).

Air bubbles affect the measurement results. For filling processes,

the valve should be installed behind the sensor. A running up time of approx. 0.5 seconds and a running down time of approx. 3 seconds should be noted.

Ord	lering o	co	de						
	1.	2							
RRI									
	Option								
1.	Nominal width								
	010		DN 10						
_	025		DN 25						
2.		າເດ	al connection						
	G A		female thread male thread						
	A T		hose nozzle						
3.	•		on material						
э.	V	, uit	PVDF						
	•	\circ	CW614N nickelled						
			1.4305						
4.			naterial						
	Q	gı	PPS						
		0	PVDF						
	-	-	PPS with transparent cover PSU						
5.			low drilling						
	020		Ø 2	•					
	050		Ø 5	•					
	070		Ø 7	•					
	080		Ø8)					
	120		Ø12						
	160		Ø16)					
6.	Seal ma	ate	rial						
	V		FKM						
	E	0	EPDM						
	Ν	0	NBR						
7.	Rotor								
	10		with 10 clamps						
	02	0	with 2 clamps						
	05	0	with 5 clamps	_					
8.		l fe	or clamps						
	К		1.4310						
			titanium						
			Hastelloy®						
9.	Signal	ou	-						
	P		PNP						
	N	0	NPN	_					
10			NAMUR						
10.		al	connection						
	K S	$\overline{\mathbf{O}}$	2 m cable						
	3	J	for round plug connector M12x1, 4-pole						

Options

• Rotor with titanium clamps

Accessories

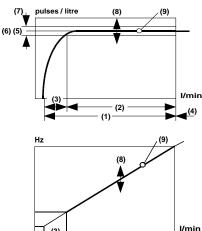
- Cable/round plug connector (KB...) see additional information • "Accessories"
- **Evaluation electronics OMNI-TA** •
- Mechanical connection pieces with non-return valve, filter, . constant flow device or customer-specific requirements available on request

Members of GHM GROUP: GREISINGER | HONSBERG | Martens | IMTRON | / Jelta - IVAL.CO

Flow Transmitter RRH

- Uncomplicated measurement of flow rates
- Metal housing with Hall sensor •
- Working pressure up to 100 bar
- Long working life thanks to high quality ceramic axis and • special plastic bearing
- Run-in and run-out sections are not necessary. •
- Modular construction with various connection systems
- Plug-in and rotatable connections
- Output signal PNP or NPN •
- Intrinsically safe behaviour
- Optionally, non-return valve, filter, constant flow rate device in the connections

Characteristics


The flow meter consists of a spinner which is rotated by the flowing medium. The rotor's rotational speed is proportional to the flow volume per unit time. The rotor is fitted with magnets. A Hall sensor records the rotational speed, which is proportional to the flow rate.

Technical data

Sensor	hall element				
Nominal width	DN 10 (RRH-	010)			
	DN 25 (RRH-	025)			
Mechanical Connection	connections,	G ³ / ₈ A, G 1 A			
Pressure resistance	PN 100 bar				
Metering ranges	see table "Ra	nges"			
Medium temperature	0100 °C				
Materials medium-contact	Housing	CW614N nickelled or 1.4305			
	Rotor	PVDF with magnets, glued with epoxy resin			
	Bearing	Iglidur X			
	Axis	ceramic Zr02-TZP			
	Seal	FKM			

Materials non-medium- contact	PVC cable 1.4305, 1.4301, CW614N nickelled
Current consumption	30 mA
Output current	max. 100 mA
Electrical connection	cable 2 m or for Round plug connector M12x1, 4-pole
Resistant to short circuits	yes
Reversal polarity protected	yes
Ingress protection	IP 67
Weight	RRH-010 approx. 0.6 kg RRH-025 approx. 1.9 kg
Conformity	CE

Conformity

-(2)-

-(1)

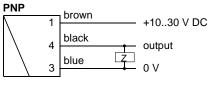
(4)

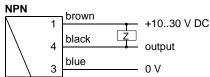
- (1) Complete metering range
- (2) Specific metering range
- (3) Start-up range
- (4) Extended operating range, increased wear, Dp > 0.5 bar
- (5) Pulses / litre (details on label)
- (6) Average pulses / litre
- (7) Tolerance ± 3 % of the measured value

(3)

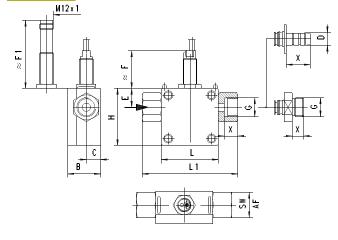
- (8) Scatter ±10 % of the pulses / litre value (5) in the batch
- (9) Reproducibility (±1 % of the full scale value) is the repeat accuracy of a frequency, relative to l/min
- (10) Max. frequency, related to the relevant metering range up to approx. 0.5 bar pressure drop across the flow meter

Ranges


Types	Q _{max}	Metering range			Pulses / litre	frequency
RRH-	l/min H₂O		I/min H₂O			Hz EW
		(1)	(2)	(3)	(6)	(10)
010020	1.8	0.1 1.5	0.5 1.5	0.10.5	4955	124
010050	12.0	0.210.0	2.0 10	0.22.0	1632	272
010070	14.4	0.412.0	2.0 12	0.42.0	860	172
025080	36.0	2.030.0	3.0 30	2.03.0	544	272
025120	72.0	3.060.0	5.0 60	3.05.0	295	295
025160	120.0	4.0 100 6.0100 4.06.0			126	210


a horizontal flow of water at 25 °C.

Members of GHM GROUP: GREISINGER | HONSBERG | Martens |



Wiring

Dimensions

Threaded connection

G	DN	Types	H/L	L1	в	С	Е	F	F1	Х	SW
G ³ / ₈	10	RRH-010G	50	84	29	12.5	16.5	33	60	12	22
G ³ / ₈ A		RRH-010A								14	
G 1	25	RRH-025G	70	110	53	23.0	27.5	28	55	18	38
G 1 A		RRH-025A		122							

Hose nozzle connection

D	DN	Types	H/L	L1	в	С	Е	F	F1	Х
Ø 11	10	RRH-010T	50	96	29	12.5	16.5	33	60	21
Ø30	25	RRH-025T	70	176	53	23.0	27.5	28	55	45
Custon	n spec	ific connectors	on req	uest						

Handling and operation

Installation

The Rototron device is installed in the pipework with the aid of the rotatable adapter pieces. If necessary, the adapters can be removed from the body of the housing after the stainless steel clips have been removed from the housing. Before reinstalling, it should be ensured that both the adapter with the O-ring and the sealing surface in the body are clean and undamaged. The adapters should be fitted carefully in the housing (it is best to turn them), so that the O-ring is not damaged.

With this flow sensor, there is no need for run-in and run-out sections. However, it should be ensured that the flow sensor is at all times filled with medium. Any preferred installation position is possible, but the best possible venting position should be chosen (rotor axis horizontal, flow horizontal or from bottom to top).

Air bubbles affect the measurement results. For filling processes, the valve should be installed behind the sensor. A running up time of approx. 0.5 seconds and a running down time of approx. 3 seconds should be noted.

Ordering code

RR	1. RH-	2. 3. 4. 5. 6. 7. 8. 9. 10.								
Optio	on = O									
1.	Nominal width									
	010 DN 10									
	025	DN 25								
2.	Mechani	cal connection								
	G	female thread								
	А	male thread								
	Т	hose nozzle								
3.	Connect	on material								
	М	CW614N nickelled								
	К	1.4305								
4.	Housing	material								
	М	CW614N								
	К	1.4305								
5.	Inwards	flow drilling								
	020	Ø 2.0								
	050	Ø 5.0								
	070	Ø 7.0								
	080	Ø 8.0								
	120	Ø12.0 •								
	160	Ø16.0 •								
6.	Seal mat	erial								
	V	FKM								
	E O	EPDM								
	N O	NBR								
	КО	Kemraz								
7.	Rotor									
	05	with 5 magnets								
	02 O	with 2 magnets								
8.	Rotor ma									
	V	PVDF								
9.	Signal or	-								
	P	PNP								
	Ν	NPN								
10.		I connection								
	K	2 m cable								
	S O	for round plug connector M12x1, 4-pole								

Options

- Transparent cover DN 10 •
- Air or gas model •

Accessories

- Cable/round plug connector (KB...) • see additional information "Accessories"
- Evaluation electronics OMNI-TA •
- Mechanical connection pieces with non-return valve, filter, constant flow device or customer-specific requirements available on request

Members of GHM GROUP: GREISINGER | HONSBERG | Martens | IMTRON | Setto III | VAL.CO

Flow Switch LABO-RRI-S

- Uncomplicated monitoring of flow rates •
- No magnets; uses inductive sensor
- Long working life thanks to high quality ceramic axis and • special plastic bearing
- Run-in and run-out sections are not necessary.
- Modular construction with various connection systems •
- Plug-in and rotatable connections .
- Optionally, non-return valve, filter, constant flow rate devi-• ce in the connections

Characteristics

The flow meter consists of a spinner which is rotated by the flowing medium. The rotor's rotational speed is proportional to the flow volume per unit time. The rotor is fitted with stainless steel clamps (optionally titanium or Hastelloy®). An inductive proximity switch records the rotational speed, which is proportional to the flow rate.

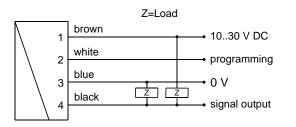
The LABO-RRI electronics make available an electronic switching output (push-pull) with adjustable characteristics (minimum/maximum) and hysteresis, which responds when an adjustable limit is fallen short of or exceeded.

If desired, the switching value can be set to the currently existing flow using "teaching".

Models with analog or pulse output are also available.

Technical data

Technical uala						
Sensor	inductive					
Nominal width	DN 10 (LABO-F	RI-010)				
	DN 25 (LABO-F	RI-025)				
Mechanical Connection	female thread G male thread G ³					
••••••	hose nozzle Ø1					
		, crimped, and plug-in				
		nnections with constant flow miters available on request)				
Switching ranges	0.1100 l/min	initers available on request)				
ownening ranges	for details, see	table "Ranges"				
Measurement accuracy	±3 % of the mea	asured value				
Repeatability	±1 % of full scal	e value				
Pressure loss	max. 0.5 bar					
Pressure resistance	PN 16 bar					
Medium	060 °C					
temperature	000					
Storage	-20+80 °C					
temperature						
Materials	Housing PPS					
medium-contact	(Fortron 1140L4) Rotor PVDF					
	Clamps	1.4310				
	optionally:					
		titanium or Hastelloy®				
	Bearing	Iglidur X				
	Axis	Ceramic Zr0 ₂ -TZP				
	Seal	FKM				
Materials, non- medium-contact	Clamps	1.4301				
medium-contact	Electronic	CW614N nickelled				
Supply	housing 1030 V DC at	voltage output 10 V:				
voltage	1530 V DC					
Power consumption	< 1 W (for no-lo	ad outputs)				
Switching output	transistor outpu	t "push-pull"				
		ort circuits and polarity				
Display	yellow LED					
	(On = Normal / rapid flashing =					
Electrical		onnector M12x1, 4-pole				
connection	iei rouna piug o	onnotor wrizki, + polo				
Ingress protection	IP 67					
Weight	LABO-RRI-010	approx. 0.2 kg				
	LABO-RRI-025	approx. 0.5 kg				
Conformity	CE					

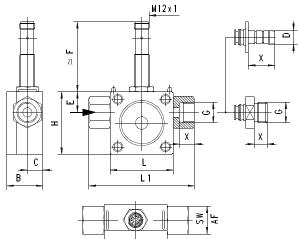

Ranges

Metering range I/min (H ₂ O)	Types	Q _{max} I/min (H ₂ O)
0.1 1.5	LABO-RRI-010020	1.8
0.2 10.0	LABO-RRI-010050	12.0
0.4 12.0	LABO-RRI-010070	14.4
2.0 30.0	LABO-RRI-025080	36.0
3.0 60.0	LABO-RRI-025120	72.0
4.0 100.0	LABO-RRI-025160	120.0

Members of GHM GROUP: GREISINGER | HONSBERG | Martens | IMTRON | / Jelta - IVAL.CO ghm_pi-ho-sm-flow-rotor_inline_model_e V1.03-01

Wiring

Connection example: PNP NPN



Before the electrical installation, it must be ensured that the supply voltage corresponds to the data sheet.

It is recommended to use shielded wiring.

The push-pull output) can as desired be switched as a PNP or an NPN output.

Dimensions

Threaded connection

G	DN	Types	H/L	L1	в	С	Е	F	Х	SW
G ³ / ₈	10	RRI-010G	50	84	29	12.5	16.5	56	12	22
G ³ / ₈ A		RRI-010A							14	
G 1	25	RRI-025G	70	110	53	23.0	27.5	51	18	38
G 1 A		RRI-025A	1	122						
NPT thre	ads or	n request								

Hann nazzla connection

1	1026	HOZZIE	CONNECTION	

D	DN	Types	H/L	L1	В	С	E	F	X
Ø11	10	RRI-010T	50	96	29	12.5	16.5	56	21
Ø30	30 25 RRI-025T 70 176 53 23.0 27.5 51 45							45	
Custor	Custom specific connectors on request								

Handling and operation

Installation

The Rototron device is installed in the pipework with the aid of the rotatable adapter pieces. If necessary, the adapters can be removed from the body of the housing after the stainless steel clips have been removed from the housing. Before reinstalling, it should be ensured that both the adapter with the O-ring and the sealing surface in the body are clean and undamaged. The adapters should be fitted carefully in the housing (it is best to turn them), so that the O-ring is not damaged.

With this flow sensor, there is no need for run-in and run-out sections. However, it should be ensured that the flow sensor is at all times filled with medium. Any preferred installation position is possible, but the best possible venting position should be chosen (rotor axis horizontal, flow horizontal or from bottom to top).

Air bubbles affect the measurement results. For filling processes, the valve should be installed behind the sensor. A running up time of approx. 0.5 seconds and a running down time of approx. 3 seconds should be noted.

Note

The switching value can be programmed by the user via "teaching". If desired, programmability can be blocked by the manufacturer.

The ECI-1 device configurator with associated software is available as a convenient option for programming all parameters by PC, and for adjustment.

Operation and programming

The teaching process can be carried out by the user as follows:

- The flow rate to be set is applied to the device.
- Apply an impulse of at least 0.5 seconds and max. 2 seconds duration to pin 2 (e.g. via a bridge to the supply voltage or a pulse from the PLC), in order to accept the measured value.
- When the teaching is complete, pin 2 should be connected to 0 V, so as to prevent unintended programming.

The devices have a yellow LED which flashes during the programming pulse. During operation, the LED serves as an indicator of operating voltage (for analog output) or of switching status (for frequency or pulse output).

In order to avoid the need to transit to an undesired operating status during the teach-in, the device can be provided ex-works with a teach-offset. The teach-offset point is added to the currently measured value before saving. The offset point can be positive or negative.

Example: The end of the metering range should be set to 80 %. However, only 60 % can be achieved without problem. In this case, the device would be ordered with a "teach-offset" of +20 %.. At a flow rate of 60 % in the process, teaching would then store a value of 80 %.

Product information Flow - rotor, Inline

Ord	lering co	de						
	basic devic D-RRI-010	e is ordered e.g. RRI-010xxx with electronics e.g. xxx						
	1.	2. 3. 4. 5. 6. 7. 8. 9.						
RF	RI-	E						
10. 11. 12. 13. 14. 15. LABO- RRI- S S S S								
O=C	Option							
1.	Nominal	width						
	010	DN 10						
	025	DN 25						
2.	Mechanic	al connection						
	G	female thread						
	A	male thread						
	Т	hose nozzle						
3.	Connectio	on material						
	V	PVDF						
	M O	CW614N nickelled						
	к о	1.4305						
4.	Housing	material						
	Q	PPS						
	V	PVDF						
	A O	PPS with transparent cover PSU						
5.		low drilling						
	020	Ø 2.0						
	050	Ø 5.0						
	070	Ø 7.0						
	080	Ø 8.0						
	120	Ø12.0						
	160	Ø16.0						
6.	Seal mate							
	V	FKM						
	-	EPDM						
		NBR						
7.	Rotor							
	10	with 10 clamps						
	02 O	with 2 clamps						
	-	with 5 clamps						
8.		or clamps						
-	K	1.4310						
	т о	titanium						
	н о	Hastelloy®						
9.	Connectio							
	E	electronics						
4.0								
10.	For nomi							
	010	DN 10						
	025	DN 25						
11.		g output (Limit switch)						
40	S	push-pull (compatible with PNP and NPN)						
12.	Program							
	P	programmable (teaching possible)						
	N O	cannot be programmed (no teaching)						
13.		y function						
	L	minimum-switch						
	Н	maximum-switch						

14.	Switching					
	0	standard				
		inverted				
15.		connection	oto - 14	04	4 '	.
	S	for round plug conne	ctor M1	2x1,	4-pol	e
Inti	ions for L	ABO				
P						
	•	y period (0.099.9 s)			•	S
ron	n Normal to	Alarm)				
		elay period (0.099.9	s)			S
ron	n Alarm to I	Normal)				
		i y period (099 s)				S
		g the supply, time dur				
vnic	in the switc	hing output is not activ	/ated)			
	ching out	out fixed at				l/min
, vv 11	ull only out	ימנ האכט מנ				1/11111
Swit	ching hys	teresis				%
	•••	of the metering range	•			
		3				
eac	ch-offset					%
in p	ercent of th	e metering range)				
tan	dard = 0 %					
urth	her options	available on request.				
) pti	ions					
F	Rotor with t	tanium clamps				
CC	essories					
	Cable/round	d plug connector (KB	.)			
		al information "Acces	sories"			
) [Device conf	igurator ECI-1				

Flow Transmitter LABO-RRI-I / U / F / C

- Uncomplicated measurement of flow rates •
- No magnets; uses inductive sensor
- Long working life thanks to high quality ceramic axis and special plastic bearing
- Run-in and run-out sections are not necessary.
- Modular construction with various •
- connection systems
- Plug-in and rotatable connections
- 0..10 V, 4..20 mA , frequency/pulse output, completely configurable
- Optionally, non-return valve, filter, constant flow rate device in the connections

Characteristics

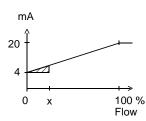
The flow meter consists of a spinner which is rotated by the flowing medium. The rotor's rotational speed is proportional to the flow volume per unit time. The rotor is fitted with stainless steel clamps (optionally titanium or Hastelloy®). An inductive proximity switch records the rotational speed, which is proportional to the flow rate.

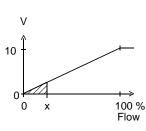
The LABO-RRI electronics make various output signals available:

- •
- Analog signal 0/4..20 mA (LABO-RRI-I) Analog signal 0/2..10 V (LABO-RRI-U) •
- Frequency signal (LABO-RRI-F) or •
- Value signal Pulse / x Litres (LABO-RRI-C) .

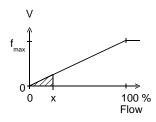
A model with switching output is also available.

If desired, the range end value can be set to the currently existing flow using "teaching".


inductive				
DN 10 (FLEX-RRI-010)				
•	,			
· · ·	,			
hose nozzle Ø	ð11, Ø30			
	ed, crimped, and plug-in			
	connections with constant flow limiters available on request)			
	,			
	e table "Ranges"			
±3 % of the measured value				
±1 % of full so	cale value			
max. 0.5 bar				
PN 16 bar				
o oc - 0				
-20+80 °C				
Housing	PPS			
Housing	(Fortron 1140L4)			
Rotor	PVDF			
Clamps	1.4310			
F -	optionally:			
	titanium or Hastelloy®			
Bearing	Iglidur X			
	Ceramic Zr0 ₂ -TZP			
	FKM			
•	1.4301 CW614N pickelled			
	CW614N nickelled			
1030 V DC a	at voltage output 10 V:			
	load outputs)			
	,			
	all outputs are resistant to short circuits and reversal polarity protected			
	20 mA available on request)			
	V available on request)			
	out "push-pull"			
	max. ncy dependent on			
metering rang	e, standard 500 Imp/l			
	to 666.7 Hz at 80 l/min)			
	nall values: 5000 Imp/l to 500 Hz at 6 l/min)			
	ncies available on request)			
· ·	out "push-pull"			
•				
• •	nows operating voltage			
	U) or output status			
(LABO-RRI-F	/ Ć) (rapid flashing =			
<u> </u>	/			
for round plug	connector M12x1, 4-pole			
IP 67				
	0 approx. 0.2 kg			
	0			
	DN 25 (FLEX, female thread male thread (other threade connections, or rate device or 0.1100 l/min for details, se ±3 % of the m ±1 % of full so max. 0.5 bar PN 16 bar 060 °C -20+80 °C Housing Rotor Clamps Bearing Axis Seal Clamps Electronic housing 1030 V DC a 1530 V DC <1 W (for no- all outputs are reversal polar 420 mA (02 010 V (210 Output current transistor output freque metering rang (corresponds Rrange for sn (corresponds Rrange for sn (corresponds Rra			

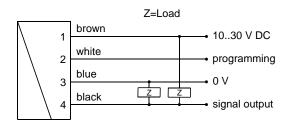


Signal output curves


Current output

Voltage output

Frequency output


 f_{max} selectable in the range of up to 2000 Hz

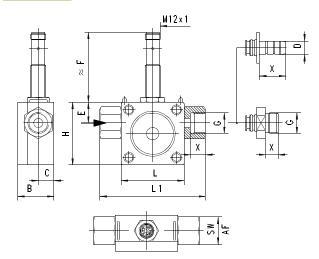
Other characters on request.

Ranges

Metering range I/min (H ₂ O)	Types	Q _{max} I/min (H ₂ O)
0.1 1.5	LABO-RRI-010020	1.8
0.2 10.0	LABO-RRI-010050	12.0
0.4 12.0	LABO-RRI-010070	14.4
2.0 30.0	LABO-RRI-025080	36.0
3.0 60.0	LABO-RRI-025120	72.0
4.0100.0	LABO-RRI-025160	120.0

Wiring

Connection example: PNP NPN



Before the electrical installation, it must be ensured that the supply voltage corresponds to the data sheet.

It is recommended to use shielded wiring.

The push-pull output) of the frequency output version can as desired be switched as a PNP or an NPN output.

Dimensions

Threaded connection

G	DN	Types	H/L	L1	в	С	Е	F	Х	SW
G ³ / ₈	10	RRI-010G	50	84	29	12.5	16.5	56	12	22
G ³ / ₈ A		RRI-010A	1						14	
G 1	25	RRI-025G	70	110	53	23.0	27.5	51	18	38
G 1 A	1	RRI-025A	1	122						

Hose nozzle connection

D	DN	Types	H/L	L1	В	С	Ε	F	Х
Ø11	10	RRI-010T	50	96	29	12.5	16.5	56	21
Ø30	25	RRI-025T	70	176	53	23.0	27.5	51	45
Custom	Custom specific connectors on request								

Handling and operation

Installation

The Rototron device is installed in the pipework with the aid of the rotatable adapter pieces. If necessary, the adapters can be removed from the body of the housing after the stainless steel clips have been removed from the housing. Before reinstalling, it should be ensured that both the adapter with the O-ring and the sealing surface in the body are clean and undamaged. The adapters should be fitted carefully in the housing (it is best to turn them), so that the O-ring is not damaged.

With this flow sensor, there is no need for run-in and run-out sections. However, it should be ensured that the flow sensor is at all times filled with medium. Any preferred installation position is possible, but the best possible venting position should be chosen (rotor axis horizontal, flow horizontal or from bottom to top).

Air bubbles affect the measurement results. For filling processes, the valve should be installed behind the sensor. A running up time of approx. 0.5 seconds and a running down time of approx. 3 seconds should be noted.

Note

The metering range end value can be programmed by the user via "teaching". Requirement for programmability must be stated when ordering, otherwise the device cannot be programmed. The ECI-1 device configurator with associated software is available as a convenient option for programming all parameters by PC, and for adjustment.

The teaching option is not available for the pulse output version.

Operation and programming

The teaching process can be carried out by the user as follows:

- The flow rate to be set is applied to the device.
- Apply an impulse of at least 0.5 seconds and max. 2 seconds duration to pin 2 (e.g. via a bridge to the supply voltage or a pulse from the PLC), in order to accept the measured value.
- When the teaching is complete, pin 2 should be connected to 0 V, so as to prevent unintended programming.

The devices have a yellow LED which flashes during the programming pulse. During operation, the LED serves as an indicator of operating voltage (for analog output) or of switching status (for frequency or pulse output).

In order to avoid the need to transit to an undesired operating status during the teach-in, the device can be provided ex-works with a teach-offset. The teach-offset point is added to the currently measured value before saving. The offset point can be positive or negative.

Example: The end of the metering range should be set to 80 %. However, only 60 % can be achieved without problem. In this case, the device would be ordered with a "teach-offset" of $\pm 20^{\circ}$ %. At a flow rate of 60 % in the process, teaching would then store a value of 80 %.

If necessary, a far greater number of parameters can also be programmed using the ECI-1 device configurator.

Ordering code

The basic device is ordered e.g. RRI-010xxx with electronics e.g. LABO-RRI-010xxx

LABO-RRI-

-		-				
О	_	റ	n	ti	n	n

U =C	ption	
1.	Nominal	width
	010	DN 10
	025	DN 25
2.	Mechanic	al connection
	G	female thread
	А	male thread
	Т	hose nozzle
3.	Connecti	on material
	V	PVDF
	M O	CW614N nickelled
	КО	1.4305
4.	Housing	material
	Q	PPS
	V	PVDF
	A O	PPS with transparent cover PSU
5.	Inwards f	low drilling
	020	Ø 2.0
	050	Ø 5.0
	070	Ø 7.0
	080	Ø 8.0
	120	Ø12.0 •
	160	Ø16.0 •
6.	Seal mate	erial
	V	FKM
	-	EPDM
_		NBR
7.	Rotor	
	10	with 10 clamps
		with 2 clamps
_		with 5 clamps
8.		or clamps
	K	1.4310
•	H O Connecti	Hastelloy [®]
9.	F	electronics
	L	
10.	Signal ou	Itput
	1	current output 420 mA
	U	voltage output 010 V
		frequency output (see "Ordering information")
	С	pulse output (see "Ordering information")
11.	Program	-
	Ν	cannot be programmed (no teaching)
		programmable (teaching possible)
12.		connection
	S	for round plug connector M12x1, 4-pole

Required ordering information

For LABO-RRI-F: Output frequency at full scale Maximum value: 2.000 Hz

For LABO-RRI-C:

For the pulse output version, the volume (with numerical value and unit) which will correspond to one pulse must be stated.

Volume per pulse (numerical value)

Volume per pulse (unit)

Hz

Options for LABO

Special range for analog output: <= metering range (standard=metering range)

Special range for frequency output:

<= metering range (standard=metering range)

Power-On delay period (0..99 s)

(time after applying power during which the outputs are not activated or set to defined values)

Further options available on request.

Options

Rotor with titanium clamps

Accessories

- Cable/round plug connector (KB...) see additional information "Accessories"
- Evaluation electronics OMNI-TA
- Device configurator ECI-1

		l/min

	l/min

ghm_pi-ho-sm-flow-rotor_inline_model_e V1.03-01

Honsberg

C Member of GHM GROUP

LABO-RRH-S

Product Information

Flow Switch .ABO-RRH-S

- Uncomplicated monitoring of flow rates
- Metal housing with Hall sensor
- Working pressure up to 100 bar •
- Long working life thanks to high quality ceramic axis and special plastic bearing
- Run-in and run-out sections are not necessary.
- Modular construction with various connection systems
- Plug-in and rotatable connections
- Optionally, non-return valve, filter, constant flow rate device in the connections

Characteristics

The flow meter consists of a spinner which is rotated by the flowing medium. The rotor's rotational speed is proportional to the flow volume per unit time. The rotor is fitted with magnets. A Hall sensor records the rotational speed, which is proportional to the flow rate.

The LABO-RRH electronics make available an electronic switching output (push-pull) with adjustable characteristics

(minimum/maximum) and hysteresis, which responds when an adjustable limit is fallen short of or exceeded.

If desired, the switching value can be set to the currently existing flow using "teaching".

Models with analog or pulse output are also available.

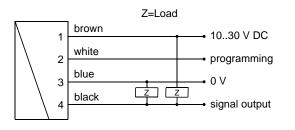
Technical data Sensor hall element DN 10 (LABO-RRH-010) Nominal width DN 25 (LABO-RRH-025) Mechanical female thread G ³/₈, G 1 male thread G ³/₈ A, G 1 A Connection hose nozzle Ø11, Ø30 (other threaded, crimped, and plug-in connections, connections with constant flow rate device or limiters available on request) 0.1..100 l/min Switching ranges for details, see table "Ranges" Measurement ±3 % of the measured value accuracy Repeatability ±1 % of full scale value Pressure loss max. 0.5 bar Pressure PN 100 bar resistance 0..60 °C, optionally 0..100 °C Medium temperature Storage -20..+80 °C temperature Materials Housing CW614N nickelled or medium-contact 1.4305 PVDF with magnets, Rotor glued with epoxy resin Bearing Iglidur X Ceramic Zr02-TZP Axis FKM Seal Clamps 1.4301 Materials, nonmedium-contact Electronic hou- CW614N nickelled sing Supply 10..30 V DC at voltage output 10 V: voltage 15..30 V DC < 1 W (for no-load outputs) Power consumption Switching output transistor output "push-pull"

•	(resistant to short circle reversal) $I_{out} = 100 \text{ mA}$	uits and polarity
Display	yellow LED (On = Normal / Off = A rapid flashing = Progra	
Electrical connection	for round plug connec	tor M12x1, 4-pole
Ingress protection	IP 67	
Weight	LABO-RRH-010	approx. 0.6 kg
	LABO-RRH-025	approx. 1.9 kg
Conformity	CE	

Ranges

Metering range I/min (H ₂ O)	Types	Q _{max} I/min (H ₂ O)
0.1 1.5	LABO-RRH-010020	1.8
0.2 10.0	LABO-RRH-010050	12.0
0.4 12.0	LABO-RRH-010070	14.4
2.0 30.0	LABO-RRH-025080	36.0
3.0 60.0	LABO-RRH-025120	72.0
4.0100.0	LABO-RRH-025160	120.0

Members of the GHM GROUP: GREISINGER | HONSBERG | Martens | IMTRON | / Seltacein



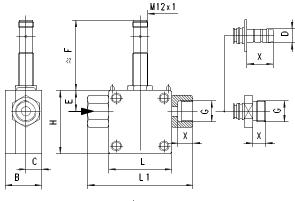
C Member of GHM GROUP

LABO-RRH-S

Product Information

Wiring

Connection example: PNP NPN



Before the electrical installation, it must be ensured that the supply voltage corresponds to the data sheet.

It is recommended to use shielded wiring.

The push-pull output) can as desired be switched as a PNP or an NPN output.

Dimensions

Threaded connection

DN	Types	H/L	L1	в	С	E	F	Х	SW
10	RRH-010G	50	84	29	12.5	16.5	56	12	22
	RRH-010A							14	
25	RRH-025G	70	110	53	23.0	27.5	51	18	38
	RRH-025A	1	122						
	10 25	10 RRH-010G RRH-010A 25 RRH-025G	10 RRH-010G 50 RRH-010A 25 RRH-025G 70 RRH-025A 70 RRH-025A 70	Number Name RRH-010G 50 84 RRH-010A 25 RRH-025G 70 110 RRH-025A 71 122 122	10 RRH-010G RRH-010A 50 84 29 25 RRH-025G 70 110 53	10 RRH-010G RRH-010A 50 84 29 12.5 25 RRH-025G 70 110 53 23.0	10 RRH-010G RRH-010A 50 84 29 12.5 16.5 25 RRH-025G 70 110 53 23.0 27.5	10 RRH-010G RRH-010A 50 84 29 12.5 16.5 56 25 RRH-025G 70 110 53 23.0 27.5 51	10 RRH-010G RRH-010A 50 84 29 12.5 16.5 56 12 25 RRH-025G 70 110 53 23.0 27.5 51 18

NPT threads on request

Hose nozzle connection

D	DN	Types	H/L	L1	В	С	Е	F	Х
Ø11	10	RRH-010T	50	96	29	12.5	16.5	56	21
Ø30	25	RRH-025T	70	176	53	23.0	27.5	51	45
Custon	n specif	ic connectors or	n reque	st					

Handling and operation

Installation

The Rototron device is installed in the pipework with the aid of the rotatable adapter pieces. If necessary, the adapters can be removed from the body of the housing after the stainless steel clips have been removed from the housing. Before reinstalling, it should be ensured that both the adapter with the O-ring and the sealing surface in the body are clean and undamaged. The adapters should be fitted carefully in the housing (it is best to turn them), so that the O-ring is not damaged.

With this flow sensor, there is no need for run-in and run-out sections. However, it should be ensured that the flow sensor is at all times filled with medium. Any preferred installation position is possible, but the best possible venting position should be chosen (rotor axis horizontal, flow horizontal or from bottom to top).

Air bubbles affect the measurement results. For filling processes, the valve should be installed behind the sensor. A running up time of approx. 0.5 seconds and a running down time of approx. 3 seconds should be noted.

Note

The switching value can be programmed by the user via "teaching". If desired, programmability can be blocked by the manufacturer.

The ECI-1 device configurator with associated software is available as a convenient option for programming all parameters by PC, and for adjustment.

Operation and programming

The teaching process can be carried out by the user as follows:

- The flow rate to be set is applied to the device.
- Apply an impulse of at least 0.5 seconds and max. 2 seconds duration to pin 2 (e.g. via a bridge to the supply voltage or a pulse from the PLC), in order to accept the measured value.
- When the teaching is complete, pin 2 should be connected to 0 V, so as to prevent unintended programming.

The devices have a yellow LED which flashes during the programming pulse. During operation, the LED serves as an indicator of operating voltage (for analog output) or of switching status (for frequency or pulse output).

To avoid the need to transit to an undesired operating status for the purpose of teaching, the device can be provided ex-works with a teach-offset. The teach-offset point is added to the currently measured value before saving. The offset point can be positive or negative.

Example: The end of the metering range should be set to 80 %. However, only 60 % can be achieved without problem. In this case, the device would be ordered with a "teach-offset" of +20 %.. At a flow rate of 60 % in the process, teaching would then store a value of 80 %.

HONSBERG C Member of GHM GROUP

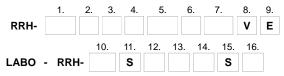
LABO-RRH-S

. s

. s

s

l/min


%

%

Product Information

Ordering code

The basic device is ordered e.g. RRH-010xxx with electronics e.g. LABO-RRH-010xxx

O=Option

	puon	
1.	Nominal	width
	010	DN 10
	025	DN 25
2.	Mechanic	cal connection
	G	female thread
	A	male thread
	Т	hose nozzle
3.	Connecti	on material
	Μ	CW614N nickelled
	К	1.4305
4.	Housing	material
	М	CW614N
	К	1.4305
5.	Inwards f	flow drilling
	020	Ø 2.0
	050	Ø 5.0
	070	Ø 7.0
	080	Ø 8.0
	120	Ø12.0
	160	Ø16.0
6.	Seal mat	
•••	V	FKM
		EPDM
		NBR
		Kemraz
7.	Rotor	
	05	with 5 magnets
		with 2 magnets
8.	Rotor ma	3
0.	V	PVDF
9.	v Connecti	
э.	E	electronics
	L	
10.	For nomi	nal width
	010	DN 10 •
	025	DN 25 •
11.	Switching	g output (Limit switch)
	S	push-pull (compatible with PNP and NPN)
12.	Program	•
	P	programmable (teaching possible)
	N O	cannot be programmed (no teaching)
13.		g function
	L	minimum-switch
	H	maximum switch
14.	Switchin	
	0	standard
15.	-	Inverted
13.	S	for round plug connector M12x1, 4-pole
16.	Optional	
		100 °C version (with 300 mm cable)
		· · · · · · · ·

Options for LABO
Switching delay period (0.099.9 s)

(from Normal to Alarm)	
Switch-back delay period (0.099.9 s)	
(from Alarm to Normal)	

Power-On-Delay period (0..99 s) (after connecting the supply, time during which the switching output is not activated)

Switching output fixed at

Switching hysteresis

standard = 2 % of the metering range

Teach-offset

(in percent of the metering range) Standard = 0 %

Further options available on request.

Options

- Transparent cover DN 10 •
- Air or gas model

Accessories

- Cable/round plug connector (KB...) . see additional information "Accessories"
- Device configurator ECI-1

Members of the GHM GROUP: GREISINGER | HONSBERG | Martens | IMTRON | / Jeltaceim

Flow Transmitter LABO-RRH-I/U/F/C

- Uncomplicated measurement of flow rates •
- Metal housing with Hall sensor •
- Working pressure up to 100 bar •
- Long working life thanks to high quality ceramic axis and • special plastic bearing
- Run-in and run-out sections are not necessary.
- Modular construction with various • connection systems
- Plug-in and rotatable connections
- 0..10 V, 4..20 mA , frequency/pulse output, completely configurable
- Optionally, non-return valve, filter, constant flow rate device in the connections

Characteristics

The flow meter consists of a spinner which is rotated by the flowing medium. The rotor's rotational speed is proportional to the flow volume per unit time. The rotor is fitted with magnets. A Hall sensor records the rotational speed, which is proportional to the flow rate.

The LABO-RRH electronics make various output signals available:

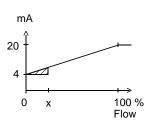
- Analog signal 0/4..20 mA (LABO-RRH-I) .
- Analog signal 0/2..10 V (LABO-RRH-U) •
- Frequency signal (LABO-RRH-F) or •
- Value signal Pulse / x Litres (LABO-RRH-C)

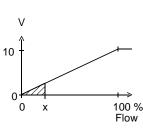
A model with switching output is also available.

If desired, the range end value can be set to the currently existing flow using "teaching".

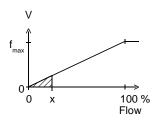
Sensor	hall element	
Nominal width	DN 10 (LABC)-RRH-010)
	DN 25 (LAB	,
Mechanical	female threa	,
connection		G ³ / ₈ A, G 1 A
	hose nozzle	
		ed, crimped, and plug-in connections with constant flow
	,	r limiters available on request)
Metering ranges	0.1100 l/mir	I /
5 5	for details, se	ee table "Ranges"
Measurement	±3 % of the r	neasured value
accuracy		
Repeatability	±1 % of full s	cale value
Pressure loss	max. 0.5 bar	
Pressure resistance	PN 100 bar	
Medium	0.60°C opt	onally 0100 °C
temperature	500 C, Opt	
Storage	-20+80 °C	
temperature		
Materials	Housing	CW614N nickelled or
medium-contact	Diti	1.4305
	Rotor	PVDF with magnets,
	Bearing	glued with epoxy resin
	Bearing Axis	lglidur X Ceramic Zr0₂-TZP
	Seal	FKM
Materials, non-	Clamps	1.4301
medium-contact	Electronic	CW614N nickelled
	housing	OWOTHN HICKelled
Supply		at voltage output 10 V:
voltage	1530 V DC	
Power	< 1 W (for no	-load outputs)
consumption		a registant to short sirevite and
Output data:		e resistant to short circuits and rity protected
Current output:	i	20 mA available on request)
Voltage	· · ·) V available on request)
output:		nt max. 20 mA
Frequency		put "push-pull"
output:	$I_{out} = 100 \text{ mA}$	
	output freque	ency dependent on ge, standard 500 Imp/l
		s to 666.7 Hz at 80 l/min)
	· ·	all values: 5000 Imp/l
		to 500 Hz at 6 l/min)
_	· ·	ncies available on request)
Pulse output:		put "push-pull"
	l _{out} = 100 mA	
	pulse width 5 pulse per vol	
	stated	
Display	yellow LCD s	
	1 0	tage (LABO-RRH-I / U) or
		(LABO-RRH-F / C)
Flootrical		g = programming)
Electrical connection	for round plu	g connector M12x1, 4-pole
Ingress protection	IP 67	
mgrood proteotion		
Weight	I ABO-RRH-)10 approx 0.6 kg
Weight	LABO-RRH-	11 0

Conformity


CE

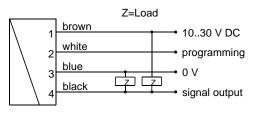


Signal output curves


Current output

Voltage output

Frequency output


 $f_{\mbox{\scriptsize max}}$ selectable in the range of up to 2000 Hz

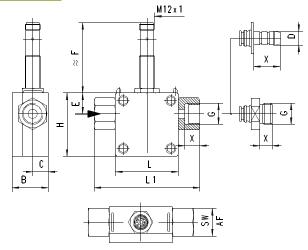
Other characters on request.

Metering ranges

Metering range I/min (H ₂ O)	Туреѕ	Q _{max} I/min (H ₂ O)
0.1 1.5	LABO-RRH-010020	1.8
0.2 10.0	LABO-RRH-010050	12.0
0.4 12.0	LABO-RRH-010070	14.4
2.0 30.0	LABO-RRH-025080	36.0
3.0 60.0	LABO-RRH-025120	72.0
4.0 100.0	LABO-RRH-025160	120.0

Wiring

Connection example:


PNP NPN

Before the electrical installation, it must be ensured that the supply voltage corresponds to the data sheet.

It is recommended to use shielded wiring.

The push-pull output) of the frequency output version can as desired be switched as a PNP or an NPN output.

Dimensions

Threaded connection

G	DN	Types	H/L	L1	в	С	E	F	Х	SW
G ³ / ₈	10	RRH-010G	50	84	29	12.5	16.5	56	12	22
G ³ / ₈ A		RRH-010A							14	
G 1	25	RRH-025G	70	110	53	23.0	27.5	51	18	38
G1A		RRH-025A		122						

Hose nozzle connection

D	DN	Types	H/L	L1	В	С	Е	F	Х
Ø11	10	RRH-010T	50	96	29	12.5	16.5	56	21
Ø30	25	RRH-025T	70	176	53	23.0	27.5	51	45

Handling and operation

Installation

The Rototron device is installed in the pipework with the aid of the rotatable adapter pieces. If necessary, the adapters can be removed from the body of the housing after the stainless steel clips have been removed from the housing. Before reinstalling, it should be ensured that both the adapter with the O-ring and the sealing surface in the body are clean and undamaged. The adapters should be fitted carefully in the housing (it is best to turn them), so that the O-ring is not damaged.

With this flow sensor, there is no need for run-in and run-out sections. However, it should be ensured that the flow sensor is at all times filled with medium. Any preferred installation position is possible, but the best possible venting position should be chosen (rotor axis horizontal, flow horizontal or from bottom to top).

Air bubbles affect the measurement results. For filling processes, the valve should be installed behind the sensor. A running up time of approx. 0.5 seconds and a running down time of approx. 3 seconds should be noted.

Note

The metering range end value can be programmed by the user via "teaching". Requirement for programmability must be stated when ordering, otherwise the device cannot be programmed.

The ECI-1 device configurator with associated software is available as a convenient option for programming all parameters by PC, and for adjustment. The teaching option is not available for the pulse output version.

Operation and programming

The teaching process can be carried out by the user as follows:

- The flow rate to be set is applied to the device.
- Apply an impulse of at least 0.5 seconds and max. 2 seconds • duration to pin 2 (e.g. via a bridge to the supply voltage or a pulse from the PLC), in order to accept the measured value.
- When the teaching is complete, pin 2 should be connected to 0 V, so as to prevent unintended programming.

The devices have a yellow LED which flashes during the programming pulse. During operation, the LED serves as an indicator of operating voltage (for analog output) or of switching status (for frequency or pulse output).

In order to avoid the need to transit to an undesired operating status during the teach-in, the device can be provided ex-works with a teach-offset. The teach-offset point is added to the currently measured value before saving. The offset point can be positive or negative.

Example: The end of the metering range should be set to 80 %. However, only 60% can be achieved without problem. In this case, the device would be ordered with a "teach-offset" of +20°%.. At a flow rate of 60 % in the process, teaching would then store a value of 80 %.

If necessary, a far greater number of parameters can also be programmed using the ECI-1 device configurator.

Ordering code

The basic with elect							xx		
	1.	2.	3.	4.	5.	6.	7.	8.	9.
RRH-								V	E
		10	11	10	10	11			

O=Option

<u> </u>	ption			
1.	Nominal	width		
	010	DN 10		
	025	DN 25		
2.	Mechanic	cal connection		
	G	female thread		
	А	male thread		
	Т	hose nozzle		
3.	Connection material			
	М	CW614N nickelled		
	К	1.4305		
4.	Housing	material		
	M	CW614N		
	К	1.4305		
5.	Inwards f	low drilling		
	020	Ø 2.0		•
	050	Ø 5.0		•
	070	Ø 7.0		•
	080	Ø 8.0	•	
	120	Ø12.0	•	
	160	Ø16.0	•	
6.	Seal mate	erial		
	V	FKM		
	E O	EPDM		
	N O	NBR		
	ко	Kemraz		
7.	Rotor			
	05	with 5 magnets		
		with 2 magnets		
8.	Rotor ma			
	V	PVDF		
9.	Connecti			
	E	electronics		
10.	For nomi	nal width		
	010	DN 10		•
	025	DN 25	•	
11.	Signal ou	itput		
	1	current output 420 mA		
	U	voltage output 010 V		
	F	frequency output (see "Ordering information")		
	C pulse output (see "Ordering information")			
12.	Programming			
	Ν	cannot be programmed (no teaching)		
	P O	programmable (teaching possible)		
13.	Electrica	connection		
	S	for round plug connector M12x1, 4-pole		
14.	Optional			
	H O	100 °C version (with 300 mm cable)		

Members of GHM GROUP: GREISINGER | HONSBERG | Martens |

Required ordering information

For LABO-RRH-F: Output frequency at full scale Maximum value: 2.000 Hz

For LABO-RRH-C:

For the pulse output version, the volume (with numerical value and unit) which will correspond to one pulse must be stated.

Volume per pulse (numerical value)

Volume per pulse (unit)

Hz

Options for LABO

Special range for analog output: <= metering range (standard=metering)

range)

Special range for frequency output: <= metering range (standard=metering range)

Power-On delay period (0..99 s)

(time after applying power during which the outputs are not activated or set to defined values)

Further options available on request.

Options

- Transparent cover DN 10
- Air or gas model

Accessories

- Cable/round plug connector (KB...) see additional information "Accessories"
- Evaluation electronics OMNI-TA
- Device configurator ECI-1

		l/min

	l/min
	1/111111

HONSBERG

C Member of GHM GROUP

FLEX-RRI

Produktinformation

Flow Transmitter / Switch FLEX-RRI

- Uncomplicated measurement of flow rates
- No magnets; uses inductive sensor
- Long working life thanks to ceramic axis and special plastic bearing
- Run-in and run-out sections are not necessary.
- Modular construction with various connection systems
- Plug-in and rotatable connections
- Analog output and switching output
- Designed for industrial use
- Small, compact construction
- Simple installation
- Simple to use
- Cable outlet infinitely rotatable
- Optionally, non-return valve, filter, constant flow rate device in the connections

Characteristics

The flow meter consists of a spinner which is rotated by the flowing medium. The rotor's rotational speed is proportional to the flow volume per unit time. The rotor is fitted with stainless steel clamps (optionally titanium or Hastelloy[®]). An inductive proximity switch records the rotational speed, which is proportional to the flow rate.

The FLEX transformer on the sensor has an analog output (4..20 mA or 0..10 V) and one switching output, which can be configured as a limit switch for monitoring minimal or maximal, or as a frequency output.

The switching output is designed as a push-pull driver, and can therefore be used both as a PNP or an NPN output. The state of the switching output is signalled with a yellow LED in the switching outlet; the LED has all-round visibility.

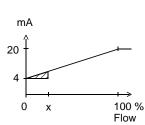
The sensor is configured in the factory, or alternatively this can be done with the aid of the optionally available ECI-1 device configurator (USB interface for PC). A selectable parameter can be modified on the device, with the aid of the magnet clip provided. In this case, the current measured value is saved as the parameter value. Examples of these parameters are the switching value or the metering range end value.

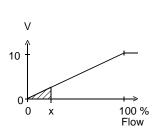
The stainless steel electronics housing is rotatable, so it is possible to orient the cable outlet after installation.

Technical data

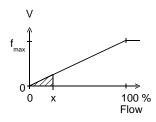
Sensor	inductive					
Nominal width	DN 10 (FLEX-RRI-01	0)				
	DN 25 (FLEX-RRI-02	25)				
Mechanical	female thread G 3/8, C	<u> </u>				
Connection	male thread G ³ / ₈ A, G	G1A				
	hose nozzle Ø11, Ø3					
	(other threaded, crim					
		ions with constant flow				
Mataria a non-no-	0.1100 l/min	available on request)				
Metering ranges	for details, see table '	"Ranges"				
Measurement	± 3 % of the measured value					
accuracy	±5 % of the measured value					
Repeatability	±1 % of full scale valu	le				
Pressure loss	max. 0.5 bar					
Pressure	PN 16 bar					
resistance						
Medium	060 °C					
temperature						
Storage	-20+80 °C					
temperature						
Materials	Housing	PPS				
medium-contact		(Fortron 1140L4)				
	Rotor	PVDF				
	Clamps	1.4310				
		optionally: titanium or				
		Hastellov®				
	Bearing	Iglidur X				
	Axis	ceramic Zr0 ₂ -TZP				
	Seal	FKM				
Materials, non-	Clamps	1.4301				
medium-contact	Electronic adapter	CW614N nickelled				
	Electronics housing	stainless steel				
	Licenterines riedsing	1.4305				
Supply voltage	1830 V DC					
Power	< 1 W					
consumption						
Analog output	420 mA / max. load					
	010 V / min. load 1 I					
Switching output	transistor output "pus					
	(resistant to short circ	cuits and polarity				
	reversal)					
Display	l _{out} = 100 mA max. yellow warning LED in plug outlet					
Electrical						
connection	for round plug connector M 12x1, 4-pole					
Ingress protection	IP 67					
Weight		approx. 0.4 kg				
		approx. 0.7 kg				
Conformity	CE					
Comonity	~-					

Members of the GHM GROUP: GREISINGER | HONSBERG | Martens | IMTRON | / Jettacera


FLEX-RRI

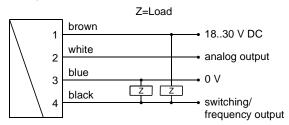

Produktinformation

Signal output curves


Current output

Frequency output

 f_{max} selectable in the range of up to 2000 Hz

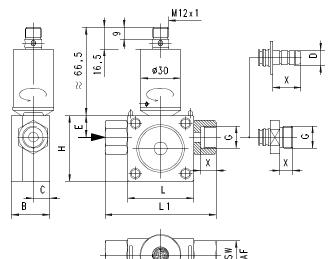

Other characters on request.

Ranges

Metering range I/min (H ₂ O)	Types	Q _{max} I/min (H ₂ O)
0.1 1.5	FLEX-RRI-010020	1.8
0.2 10.0	FLEX-RRI-010050	12.0
0.4 12.0	FLEX-RRI-010070	14.4
2.0 30.0	FLEX-RRI-025080	36.0
3.0 60.0	FLEX-RRI-025120	72.0
4.0 100.0	FLEX-RRI-025160	120.0

The measured values were determined with horizontal flow (FLEX electronics upwards) using water at 25 $^{\circ}\text{C}.$

Wiring


Connection example: PNP NPN

Before the electrical installation, it must be ensured that the supply

voltage corresponds to the data sheet. The use of shielded cabling is recommended.

Dimensions

Threaded connection

G	DN	Types	H/L	L1	в	С	Е	Х	SW
G ³ / ₈	10	RRI-010G	50	84	29	12.5	16.5	12	22
G ³ / ₈ A		RRI-010A						14	
G 1	25	RRI-025G	70	110	53	23.0	27.5	18	38
G 1 A		RRI-025A	1	122	1				
NPT threads on request									

Hose nozzle connection

D	DN	Types	H/L	L1	В	С	Е	X
Ø11	10	RRI-010T	50	96	29	12.5	16.5	21
Ø30	25	RRI-025T	70	176	53	23.0	27.5	45
Custom specific connectors on request								

Handling and operation

Installation

The Rototron device is installed in the pipework with the aid of the rotatable adapter pieces. If necessary, the adapters can be removed from the body of the housing after the stainless steel clips have been removed from the housing. Before reinstalling, it should be ensured that both the adapter with the O-ring and the sealing surface in the body are clean and undamaged. The adapters should be fitted carefully in the housing (it is best to turn them), so that the O-ring is not damaged.

With this flow sensor, there is no need for run-in and run-out sections. However, it should be ensured that the flow sensor is at all times filled with medium. Any preferred installation position is possible, but the best possible venting position should be chosen (rotor axis horizontal, flow horizontal or from bottom to top).

Air bubbles affect the measurement results. For filling processes, the valve should be installed behind the sensor. A running up time of approx. 0.5 seconds and a running down time of approx. 3 seconds should be noted.

Programming

The electronics contain a magnetic contact, with the aid of which different parameters can be programmed. Programming takes place when a magnet clip is applied for a period between 0.5 and

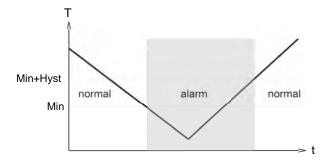
Members of the GHM GROUP: GREISINGER I HONSBERG I Martens I IMTRON I Acta

Produktinformation

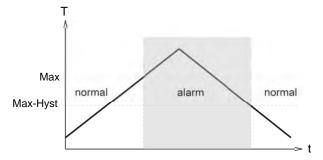
2 seconds to the marking located on the label. If the contact time is longer or shorter than this, no programming takes place (protection against external magnetic fields).

After the programming ("teaching"), the clip can either be left on the device, or removed to protect data.

The device has a yellow LED which flashes during the programming pulse. During operation, the LED serves as a status display for the switching output.


In order to avoid the need to transit to an undesired operating status during "teaching", the device can be provided ex-works with a "teach-offset". The "teach-offset" value is added to the currently measured value before saving (or is subtracted if a negative value is entered).

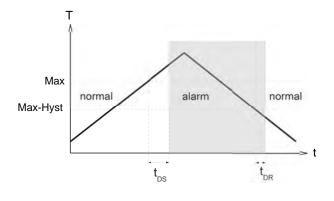
Example: The switching value is to be set to 70 % of the metering range, because at this flow rate a critical process status is to be notified. However, only 50% can be achieved without danger. In this case, the device would be ordered with a "teach-offset" of +20 %. At 50 % in the process, a switching value of 70 % would then be stored during "teaching".


Normally, programming is used to set the limit switch. However, if desired, other parameters such as the end value of the analog or frequency output may also be set.

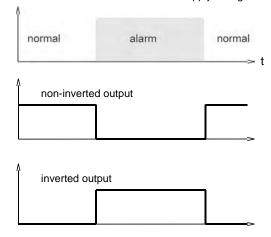
The limit switch can be used to monitor minimal or maximal.

With a minimum-switch, falling below the limit value causes a switchover to the alarm state. Return to the normal state occurs when the limit value plus the set hysteresis is again exceeded.

With a maximum-switch, exceeding the limit value causes a switchover to the alarm state. Return to the normal state occurs when the measured value once more falls below the limit value minus the set hysteresis



A switchover delay time (t_{DS}) can be applied to the switchover to the


FLEX-RRI

alarm state. Equally, one switch-back delay time (t_{DR}) of several can be applied to switching back to the normal state.

In the normal state the integrated LED is on, in the alarm state it is off, and this corresponds to its status when there is no supply voltage.

In the non-inverted (standard) model, while in the normal state the switching output is at the level of the supply voltage; in the alarm state it is at 0 V, so that a wire break would also display as an alarm state at the signal receiver. Optionally, an inverted switching output can also be provided, i.e. in the normal state the output is at 0 V, and in the alarm state it is at the level of the supply voltage.

A Power-On delay function (ordered as a separate option) makes it possible to maintain the switching output in the normal state for a defined period after application of the supply voltage.

Produktinformation

Ordering code

The basic device is ordered e.g. RRI-010... with electronics e.g. FLEX-RRI-010... 2. 3. 4. 5. 6. 7. 8. 9. Е RRI-12. 10 11. 13.

FLEX-RRI-

O=C	Option		
1.	Nominal	width	
	010	DN 10	
	025	DN 25	
2.	Mechanic	cal connection	
	G	female thread	
	А	male thread	
	Т	hose nozzle	
3.	Connecti	on material	
	V	PVDF	
	M O	CW614N nickelled	
	к о	1.4305	
4.	Housing	material	
	Q	PPS	
	V	PVDF	
	A O	PPS with transparent cover PSU	
5.		low drilling	
	020	Ø 2.0	
	050	Ø 5.0	
	070	Ø 7.0	
	080	Ø 8.0	
	120	Ø12.0	
	160	Ø16.0	
6.	Seal mate	Seal material	
	V	FKM	
	E O	EPDM	
	N O	NBR	
7.	Rotor		
	10	with 10 clamps	
	02 O	with 2 clamps	
	05 O	with 5 clamps	
8.	Material f	for clamps	
	К	1.4310	
	T O	titanium	
	н о	hastelloy®	
9.	Connecti		
	E	electronics	
10.	For nor	nol width	
10.	For nomi	DN 10	
	010	DN 10 DN 25	
11	Analog o	-	
11.		current output 420 mA	
	U	voltage output 010 V	
	С К	no analog output	
12.	Switchin		
12.	T	push-pull	
		NPN (open collector)	
	K	no switching output	

IONSBER

C Member of GHM GROUP

FLEX-RRI

13. Switching function minimum-switch L н maximum-switch R frequency output κ no switching output 14. Switching signal 0 standard **O** inverted Т

Options for FLEX

Special range for analog output: <= metering range (standard = metering range)

l/min

l/min

Hz

s

s

s

l/min

%

.

-

Special range for frequency output: <= metering range (standard = metering range)

End frequency (max. 2000 Hz)

Switching delay (from Normal to Alarm)

Switchback delay (from Alarm to Normal)

Power-On delay period (0..99 s) (time after power on, during which the outputs are not actuated)

Switching output fixed

Special hysteresis

(standard = 2 % of end value)

Options

• Rotor with titanium clamps

Accessories

- Cable/round plug connector (KB...) • see additional information "Accessories"
- Device configurator ECI-1
- Mechanical connection pieces with non-return valve, filter, constant flow device or customer-specific requirements available on request

Members of the GHM GROUP: GREISINGER | HONSBERG | Martens | IMTRON | / Jelta DEIM

HONSBERG

C Member of GHM GROUP

FLEX-RRI

Produktinformation

Flow Transmitter / Switch FLEX-RRI

- Uncomplicated measurement of flow rates
- No magnets; uses inductive sensor
- Long working life thanks to ceramic axis and special plastic bearing
- Run-in and run-out sections are not necessary.
- Modular construction with various connection systems
- Plug-in and rotatable connections
- Analog output and switching output
- Designed for industrial use
- Small, compact construction
- Simple installation
- Simple to use
- Cable outlet infinitely rotatable
- Optionally, non-return valve, filter, constant flow rate device in the connections

Characteristics

The flow meter consists of a spinner which is rotated by the flowing medium. The rotor's rotational speed is proportional to the flow volume per unit time. The rotor is fitted with stainless steel clamps (optionally titanium or Hastelloy[®]). An inductive proximity switch records the rotational speed, which is proportional to the flow rate.

The FLEX transformer on the sensor has an analog output (4..20 mA or 0..10 V) and one switching output, which can be configured as a limit switch for monitoring minimal or maximal, or as a frequency output.

The switching output is designed as a push-pull driver, and can therefore be used both as a PNP or an NPN output. The state of the switching output is signalled with a yellow LED in the switching outlet; the LED has all-round visibility.

The sensor is configured in the factory, or alternatively this can be done with the aid of the optionally available ECI-1 device configurator (USB interface for PC). A selectable parameter can be modified on the device, with the aid of the magnet clip provided. In this case, the current measured value is saved as the parameter value. Examples of these parameters are the switching value or the metering range end value.

The stainless steel electronics housing is rotatable, so it is possible to orient the cable outlet after installation.

Technical data

Sensor	inductive					
Nominal width	DN 10 (FLEX-RRI-01	0)				
	DN 25 (FLEX-RRI-02	25)				
Mechanical	female thread G 3/8, C	<u> </u>				
Connection	male thread G ³ / ₈ A, G	G1A				
	hose nozzle Ø11, Ø3					
	(other threaded, crim					
		ions with constant flow				
Mataria a non-no-	0.1100 l/min	available on request)				
Metering ranges	for details, see table '	"Ranges"				
Measurement	± 3 % of the measured value					
accuracy	±5 % of the measured value					
Repeatability	±1 % of full scale valu	le				
Pressure loss	max. 0.5 bar					
Pressure	PN 16 bar					
resistance						
Medium	060 °C					
temperature						
Storage	-20+80 °C					
temperature						
Materials	Housing	PPS				
medium-contact		(Fortron 1140L4)				
	Rotor	PVDF				
	Clamps	1.4310				
		optionally: titanium or				
		Hastellov®				
	Bearing	Iglidur X				
	Axis	ceramic Zr0 ₂ -TZP				
	Seal	FKM				
Materials, non-	Clamps	1.4301				
medium-contact	Electronic adapter	CW614N nickelled				
	Electronics housing	stainless steel				
	Licenterines riedsing	1.4305				
Supply voltage	1830 V DC					
Power	< 1 W					
consumption						
Analog output	420 mA / max. load					
	010 V / min. load 1 I					
Switching output	transistor output "pus					
	(resistant to short circ	cuits and polarity				
	reversal)					
Display	l _{out} = 100 mA max. yellow warning LED in plug outlet					
Electrical						
connection	for round plug connector M 12x1, 4-pole					
Ingress protection	IP 67					
Weight		approx. 0.4 kg				
		approx. 0.7 kg				
Conformity	CE					
Comonity	~-					

Members of the GHM GROUP: GREISINGER | HONSBERG | Martens | IMTRON | / Jettacera

Flow Transmitter / Switch FLEX-RRH

- Uncomplicated measurement of flow rates
- Metal housing with Hall sensor
- Working pressure up to 100 bar
- Long working life thanks to high quality ceramic axis and special plastic bearing
- Run-in and run-out sections are not necessary.
- Modular construction with various connection systems
- Plug-in and rotatable connections
- Analog and switching output
- Designed for industrial use
- Small, compact construction
- Simple installation
- Simple to use
- Cable outlet infinitely rotatable
- Optionally, non-return valve, filter, constant flow rate device in the connections

Characteristics

The flow meter consists of a spinner which is rotated by the flowing medium. The rotor's rotational speed is proportional to the flow volume per unit time. The rotor is fitted with magnets. A Hall sensor records the rotational speed, which is proportional to the flow rate.

The FLEX transducer on the sensor has an analog output (4..20 mA or 0..10 V) and one switching output, which can be configured as a limit switch for monitoring minimal or maximal, or as a frequency output.

The switching output is designed as a push-pull driver, and can therefore be used both as a PNP or an NPN output. The state of the switching output is signalled with a yellow LED in the switching outlet; the LED has all-round visibility.

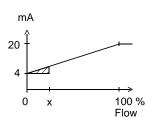
The sensor is configured in the factory, or alternatively this can be done with the aid of the optionally available ECI-1 device configurator (USB interface for PC). A selectable parameter can be modified on the device, with the aid of the magnet clip provided. In this case, the current measured value is saved as the parameter value. Examples of these parameters are the switching value or the metering range end value.

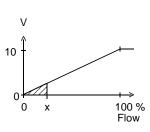
The stainless steel electronics housing is rotatable, so it is possible to orient the cable outlet after installation.

Technical data

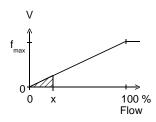
Sensor	hall element					
Nominal width	DN 10 (FLEX-RRH-01	0)				
	DN 25 (FLEX-RRH-02	25)				
Mechanical	female thread G 3/8, G					
Connection	male thread G ³ / ₈ A, G					
	hose nozzle Ø11, Ø30					
	(other threaded, crimp	ons with constant flow				
	rate device or limiters					
Metering ranges	0.1100 l/min					
	for details, see table "Ranges"					
Measurement	±3 % of the measured value					
accuracy						
Repeatability	±1 % of full scale valu	e				
Pressure loss	max. 0.5 bar					
Pressure	PN 100 bar					
resistance						
Medium	0+70 °C					
temperature	20 190 %					
Storage temperature	-20+80 °C					
Materials	Housing	CW614N nickelled				
medium-contact	riousing	or 1.4305				
	Rotor	PVDF with magnets,				
		glued with epoxy				
		resin				
	Bearing	lglidur X				
	Axis	ceramic Zr0 ₂ -TZP				
	Seal	FKM				
Materials, non-	Clamps	1.4301				
medium-contact	Electronic adapter	CW614N nickelled				
	Electronics housing	stainless steel				
		1.4305				
Supply voltage	1830 V DC					
Power	< 1 W					
consumption Analog output	420 mA / max. load 5	500 O or				
Analog output	010 V / min. load 1 k					
Switching output	transistor output "push					
J	(resistant to short circ					
	reversal)					
	$I_{out} = 100 \text{ mA max}.$					
Display	yellow warning LED in					
Electrical connection	for round plug connec	tor M12x1, 4-pole				
Ingress protection	IP 67					
Weight	FLEX-RRH-010	approx. 0.8 kg				
	FLEX-RRH-025	approx. 2.1 kg				
Conformity	CE					
-						

ghm_pi-ho-sm-flow-rotor_inline_model_e V1.03-01




Signal output curves

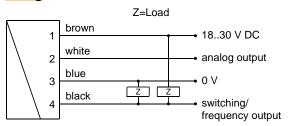
Value x = Begin of the specified range = not specified range


Current output

Voltage output

Frequency output

fmax selectable in the range of up to 2000 Hz

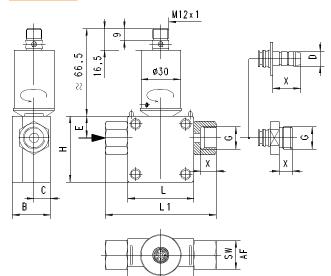

Other characters on request.

Ranges

Metering range I/min (H ₂ O)	Types	Q _{max} I/min (H₂O)
0.1 1.5	FLEX-RRH-010020	1.8
0.2 10.0	FLEX-RRH-010050	12.0
0.4 12.0	FLEX-RRH-010070	14.4
2.0 30.0	FLEX-RRH-025080	36.0
3.0 60.0	FLEX-RRH-025120	72.0
4.0 100.0	FLEX-RRH-025160	120.0

The measured values were determined with horizontal flow (FLEX electronics upwards) using water at 25 °C.

Wiring


Connection example: PNP NPN

Before the electrical installation, it must be ensured that the supply

voltage corresponds to the data sheet. The use of shielded cabling is recommended.

Dimensions

Threaded connection

DN	Types	H/L	L1	в	С	E	Х	SW
10	RRH-010G	50	84	29	12.5	16.5	12	22
	RRH-010A						14	
25	RRH-025G	70	110	53	23.0	27.5	18	38
	RRH-025A		122					
-	10	10 RRH-010G RRH-010A 25 RRH-025G	10 RRH-010G 50 RRH-010A 25 RRH-025G 70	10 RRH-010G 50 84 RRH-010A 25 RRH-025G 70 110	10 RRH-010G 50 84 29 RRH-010A 25 RRH-025G 70 110 53	10 RRH-010G 50 84 29 12.5 RRH-010A 25 RRH-025G 70 110 53 23.0	10 RRH-010G 50 84 29 12.5 16.5 RRH-010A 70 110 53 23.0 27.5	10 RRH-010G 50 84 29 12.5 16.5 12 RRH-010A 1 1 14 14 14 25 RRH-025G 70 110 53 23.0 27.5 18

NPT threads on request

Hose nozzle connection

D	DN	Types	H/L	L1	В	С	E	X
Ø11	10	RRH-010T	50	96	29	12.5	16.5	21
Ø30	25	RRH-025T	70	176	53	23.0	27.5	45

Handling and use

Installation

The Rototron device is installed in the pipework with the aid of the rotatable adapter pieces. If necessary, the adapters can be removed from the body of the housing after the stainless steel clips have been removed from the housing. Before reinstalling, it should be ensured that both the adapter with the O-ring and the sealing surface in the body are clean and undamaged. The adapters should be fitted carefully in the housing (it is best to turn them), so that the O-ring is not damaged.

With this flow sensor, there is no need for run-in and run-out sections. However, it should be ensured that the flow sensor is at all times filled with medium. Any preferred installation position is possible, but the best possible venting position should be chosen (rotor axis horizontal, flow horizontal or from bottom to top).

Air bubbles affect the measurement results. For filling processes, the valve should be installed behind the sensor. A running up time of approx. 0.5 seconds and a running down time of approx. 3 seconds should be noted.

Programming

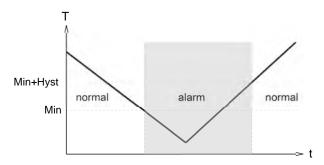
The electronics contain a magnetic contact, with the aid of which different parameters can be programmed. Programming takes place when a magnet clip is applied for a period between 0.5 and

Members of GHM GROUP: GREISINGER | HONSBERG | Martens | IMTRON | /Jeltacem | VAL.CO

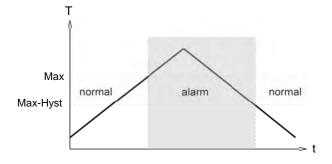
2 seconds to the marking located on the label. If the contact time is longer or shorter than this, no programming takes place (protection against external magnetic fields).

After the programming ("teaching"), the clip can either be left on the device, or removed to protect data.

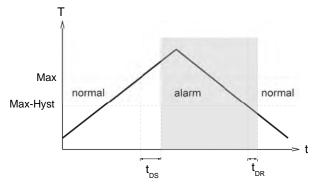
The device has a yellow LED which flashes during the programming pulse. During operation, the LED serves as a status display for the switching output.


In order to avoid the need to transit to an undesired operating status during "teaching", the device can be provided ex-works with a "teach-offset". The "teach-offset" value is added to the currently measured value before saving (or is subtracted if a negative value is entered).

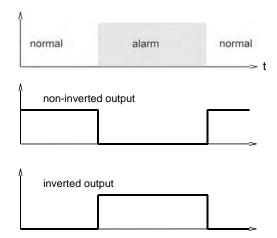
Example: The switching value is to be set to 70 % of the metering range, because at this flow rate a critical process status is to be notified. However, only 50 % can be achieved without danger. In this case, the device would be ordered with a "teach-offset" of +20 %. At 50 % in the process, a switching value of 70 % would then be stored during "teaching".


Normally, programming is used to set the limit switch. However, if desired, other parameters such as the end value of the analog or frequency output may also be set.

The limit switch can be used to monitor minimal or maximal.


With a minimum-switch, falling below the limit value causes a switchover to the alarm state. Return to the normal state occurs when the limit value plus the set hysteresis is again exceeded.

With a maximum-switch, exceeding the limit value causes a switchover to the alarm state. Return to the normal state occurs when the measured value once more falls below the limit value minus the set hysteresis.



A switchover delay time (t_{DS}) can be applied to the switchover to the alarm state. Equally, one switch-back delay time (t_{DR}) of several can be applied to switching back to the normal state.

In the normal state the integrated LED is on, in the alarm state it is off, and this corresponds to its status when there is no supply voltage.

In the non-inverted (standard) model, while in the normal state the switching output is at the level of the supply voltage; in the alarm state it is at 0 V, so that a wire break would also display as an alarm state at the signal receiver. Optionally, an inverted switching output can also be provided, i.e. in the normal state the output is at 0 V, and in the alarm state it is at the level of the supply voltage.

A Power-On delay function (ordered as a separate option) makes it possible to maintain the switching output in the normal state for a defined period after application of the supply voltage.

Members of GHM GROUP: GREISINGER | HONSBERG | Martens | IMTRON | Seltaces | VAL.CO

Ordering code

The basic with elect										
	1.	2.	3.	4.	5.	6.	7.	8.	9.	
RRH-								V	Е	
		10.	11.	12.	13.	14.				

Q=Option

FLEX-RRH-

9 -0	ption			
1.	Nominal	width		
	010	DN 10		
	025	DN 25		
2.	Mechanic	cal connection		
	G	female thread		
	A	male thread		
	Т	hose nozzle		
3.	Connecti	on material		
	М	CW614N nickelled		
	К	1.4305		
4.	Housing	material		
	M	CW614N		
	К	1.4305		
5.	Inwards	flow drilling		
	020	Ø 2.0		•
	050	Ø 5.0		•
	070	Ø 7.0		•
	080	Ø 8.0	٠	
	120	Ø12.0	•	
	160	Ø16.0	•	
6.	Seal mate	erial		
	V	FKM		
	E O	EPDM		
	N O	NBR		
		Kemraz		
7.	Rotor			
	05	with 5 magnets		
		with 2 magnets		
8.	Rotor ma			
	V	PVDF		
9.	Connecti			
	E	electronics		
10.	For nomi	nal width		
	010	DN 10		•
	025	DN 25	•	
11.	Analog o	utput		
	1	current output 420 mA		
	U	voltage output 010 V		
	K	no analog output		
12.	Switching	g output		
	Т	push-pull		
	O M	NPN (open collector)		
	К			

13.	Switchin	ching function						
	L	minimum-switch						
	Н	maximum-switch						
	R	frequency output						
	К	no switching output						
14.	Switchin	y signal						
	0	standard						
	I 0	inverted						

Options for FLEX

Special range for analog output: <= metering range (standard = metering range)

Special range for frequency output: <= metering range (standard = metering range)

End frequency (max. 2000 Hz)

Switching delay (from Normal to Alarm)

Switchback delay (from Alarm to Normal)

		s
	•	s

l/min

l/min

Hz

s

l/min

%

Power-On delay period (0..99 s) (time after power on, during which the outputs are not actuated)

Switching output fixed

Special hysteresis (standard = 2 % of end value)

Options

- Transparent cover DN 10 •
- Air or gas model

Accessories

- Cable/round plug connector (KB...)
 - see additional information "Accessories"
- Device configurator ECI-1 •
- Mechanical connection pieces with non-return valve, filter, • constant flow device or customer-specific requirements available on request

Flow Transmitter / Switch FLEX-RRH

- Uncomplicated measurement of flow rates
- Metal housing with Hall sensor
- Working pressure up to 100 bar
- Long working life thanks to high quality ceramic axis and special plastic bearing
- Run-in and run-out sections are not necessary.
- Modular construction with various connection systems
- Plug-in and rotatable connections
- Analog and switching output
- Designed for industrial use
- Small, compact construction
- Simple installation
- Simple to use
- Cable outlet infinitely rotatable
- Optionally, non-return valve, filter, constant flow rate device in the connections

Characteristics

The flow meter consists of a spinner which is rotated by the flowing medium. The rotor's rotational speed is proportional to the flow volume per unit time. The rotor is fitted with magnets. A Hall sensor records the rotational speed, which is proportional to the flow rate.

The FLEX transducer on the sensor has an analog output (4..20 mA or 0..10 V) and one switching output, which can be configured as a limit switch for monitoring minimal or maximal, or as a frequency output.

The switching output is designed as a push-pull driver, and can therefore be used both as a PNP or an NPN output. The state of the switching output is signalled with a yellow LED in the switching outlet; the LED has all-round visibility.

The sensor is configured in the factory, or alternatively this can be done with the aid of the optionally available ECI-1 device configurator (USB interface for PC). A selectable parameter can be modified on the device, with the aid of the magnet clip provided. In this case, the current measured value is saved as the parameter value. Examples of these parameters are the switching value or the metering range end value.

The stainless steel electronics housing is rotatable, so it is possible to orient the cable outlet after installation.

Technical data

Sensor	hall element						
Nominal width	DN 10 (FLEX-RRH-01	0)					
	DN 25 (FLEX-RRH-02	25)					
Mechanical	female thread G ³ / ₈ , G 1						
Connection	male thread G ³ / ₈ A, G 1 A						
	hose nozzle Ø11, Ø30						
	(other threaded, crimped, and plug-in connections, connections with constant flow						
	rate device or limiters						
Metering ranges	0.1100 l/min						
	for details, see table "	Ranges"					
Measurement	±3 % of the measured						
accuracy							
Repeatability	±1 % of full scale valu	e					
Pressure loss	max. 0.5 bar						
Pressure	PN 100 bar						
resistance							
Medium	0+70 °C						
temperature							
Storage	-20+80 °C						
temperature Materials	Housing	CW614N nickelled					
medium-contact	Housing	or 1.4305					
incului oonuot	Rotor	PVDF with magnets,					
		glued with epoxy					
		resin					
	Bearing	lglidur X					
	Axis	ceramic Zr02-TZP					
	Seal	FKM					
Materials, non-	Clamps	1.4301					
medium-contact	Electronic adapter	CW614N nickelled					
	Electronics housing	stainless steel					
		1.4305					
Supply voltage	1830 V DC						
Power	< 1 W						
consumption							
Analog output	420 mA / max. load 5						
Switching sutput	010 V / min. load 1 k						
Switching output	transistor output "push (resistant to short circ						
	reversal)	and polarity					
	$I_{out} = 100 \text{ mA max}.$						
Display	yellow warning LED ir	n plug outlet					
Electrical	for round plug connec						
connection							
Ingress protection	IP 67						
Weight	FLEX-RRH-010	approx. 0.8 kg					
	FLEX-RRH-025	approx. 2.1 kg					
Conformity	CE						
-							

ghm_pi-ho-sm-flow-rotor_inline_model_e V1.03-01

Flow Transmitter / Switch OMNI-RRI

- Uncomplicated measurement of flow rates
- No magnets; uses inductive sensor
- Long working life thanks to high quality ceramic axis and special plastic bearing
- Run-in and run-out sections are not necessary.
- Modular construction with various • connection systems
- Plug-in and rotatable connections
- Analog output 4..20 mA or 0..10 V •
- Two programmable switches •
- Graphical LCD display, backlit, • can be read in sunlight and in the dark
- Selectable units in the display Programmable parameters via rotatable, removable ring
- (programming protection) Electronics housing with non-scratch, chemically
- resistant glass Rotatable electronic housing for best reading position
- Designed for industrial use
- Small, compact construction •
- Simple installation •
- Optionally, non-return valve, filter, constant flow rate device in the connections

Characteristics

The flow meter consists of a spinner which is rotated by the flowing medium. The rotor's rotational speed is proportional to the flow volume per unit time. The rotor is fitted with stainless steel clamps (optionally titanium or Hastelloy®). An inductive proximity switch records the rotational speed, which is proportional to the flow rate.

The OMNI transducer located on the sensor has a backlit graphics LCD display which is very easy to read, both in the dark and in bright sunlight. The graphics display allows the presentation of measured values and parameters in a clearly understandable form. The measured values are displayed to 4 places, together with their physical unit, which may also be modified by the user. The electronics have an analog output (4..20 mA or 0..10 V) and two switching outputs, which can be used as limit switches for monitoring minimal or maximal, or as two-point controllers. The switching outputs are designed as push-pull drivers, and can therefore be used both as PNP and NPN outputs. Exceeding limit values is signalled by a red LED which is visible over a long distance, and by a cleartext in the display.

The stainless steel case has a hardened non-scratch mineral glass pane. It is operated by a programming ring fitted with a magnet, so there is no need to open the operating controls housing, and its leakproofness is permanently ensured.

By turning the ring to right or left, it is simple to modify the parameters (e.g. switching point, hysteresis...). To protect from unintended programming, it can be removed, turned through 180 °

and replaced, or completely removed, thus acting as a key.

OPTION C:

Preset Counter with external reset option, complementary switching outputs and actual value display.

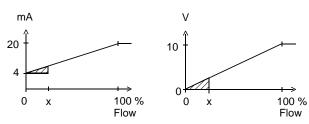
OPTION C1:

Instantaneous value display with analogue output, pulse-volume output and totalizer

Technical data

Nominal width DN 10 (OMNI-RRI-010) DN 25 (OMNI-RRI-025) Mechanical Connection female thread G ¾, G 1 male thread G ¾, G 1 male thread G ¾, A G 1 A hose nozzle Ø11, Ø30 (other threaded, crimped, and plug-in connections, connections with constant flow rate device or limiters available on request) Metering ranges 0.1100 l/min for details, see table "Ranges" Measurement accuracy ±3 % of the measured value Repeatability ±1 % of full scale value Pressure loss max. 0.5 bar Pressure resistance PN 16 bar Medium temperature 0+60 °C Storage temperature -20+80 °C Materials medium-contact Housing PPS (Fortron 1140L4) Rotor PVDF Clamps 1.4310 optionally: titanium or Hastelloy® Bearing Iglidur X Axis Ceramic Zr02-TZP Seal KM Clamps 1.4301 Electronic adapter CW614N nickelled Electronic adapter Stainless steel 1.4305 Glass Mineral glass, hardeneed Magnet Samarium-Cobalt Reselloy Clamps Lasol V DC Power consumption 420 mA / max. load 500 Ω or 010 V / min. lo	Sensor	inductive						
DN 25 (OMNI-RRI-025)Mechanical Connectionfemale thread G ¾, A, G 1 male thread G ¾, A, G 1 A hose nozzle Ø11, Ø30 (other threaded, crimped, and plug-in connections, connections with constant flow rate device or limiters available on request)Metering ranges0.1100 l/min for details, see table "Ranges"Measurement accuracy±3 % of the measured valuePressure lossmax. 0.5 barPressure lossmax. 0.5 barPressure resistancePN 16 barMedium temperature0+60 °CMaterials medium-contactHousingPPS (Clamps1.4310 optionally: titanium or Hastelloy®Materials, non- medium-contactClampsMaterials, non- medium-contac			0)					
Mechanical Connectionfemale thread G 3/a, G 1 male thread G 3/a, A, G 1 A hose nozzle Ø11, Ø30 (other threaded, crimped, and plug-in connections, connections with constant flow rate device or limiters available on request)Metering ranges0.1100 l/min for details, see table "Ranges"Measurement accuracy±3 % of the measured valueRepeatability±1 % of full scale valuePressure lossmax. 0.5 barPressure resistancePN 16 barMedium temperature0+60 °CMaterials medium-contactHousing (Fortron 1140L4) RotorMaterials medium-contactClamps (Fortron 1140L4) RotorMaterials, non- medium-contactClamps (Lamps 1.4310 optionally: titanium or Hastelloy®Materials, non- medium-contactClamps (Lamps 1.4301 (Lamps 	Nominal width	,						
Connectionmale thread G 3/ ₆ Å, G 1 A hose nozzle Ø11, Ø30 (other threaded, crimped, and plug-in connections, connections with constant flow rate device or limiters available on request)Metering ranges0.1100 l/min for details, see table "Ranges"Measurement accuracy±3 % of the measured valueRepeatability±1 % of full scale valuePressure resistancePN 16 barMedium temperature0+60 °CMaterials medium-contactHousing (Fortron 1140L4) RotorMaterials medium-contactHousing (Fortron 1140L4) RotorMaterials, non- medium-contactClamps (Lamps 1.4310 optionally: titanium or Hastelloy® Bearing Axis Ceramic Zr02-TZP SealStainless steel 1.4301 Electronic adapter CW614N nickelled Electronic shousing Stainless steel 1.4305Materials, non- medium-contactClamps 1.4301 Electronic adapter CW614N nickelled Electronic blusing Stainless steel 1.4305Supply voltage1830 V DCPower consumption20 mA / max. load 500 Ω or 0.10 V / min. load 1 kΩ	Mochanical		,					
hose nozzle Ø11, Ø30 (other threaded, crimped, and plug-in connections, connections with constant flow rate device or limiters available on request)Metering ranges0.1100 l/min for details, see table "Ranges"Measurement accuracy±3 % of the measured valueRepeatability±1 % of full scale valuePressure resistancePN 16 barMedium temperature0+60 °CStorage temperature-20+80 °CMaterials medium-contactHousing (Fortron 1140L4) RotorMaterials medium-contactQuint (Lamps)Materials, non- medium-contactClamps (Lamps)Materials, non- medium-contactLampe (Lamps)Materials, n								
(other threaded, crimped, and plug-in connections, connections with constant flow rate device or limiters available on request)Metering ranges0.1.100 l/min for details, see table "Ranges"Measurement accuracy±3 % of the measured valueRepeatability±1 % of full scale valuePressure lossmax. 0.5 barPressure resistancePN 16 barMedium temperature0+60 °CMaterials medium-contact-20+80 °CMaterials medium-contactHousingPPS (Fortron 1140L4) RotorRotorPVDF Clamps1.4310 optionally: titanium or Hastelloy®Materials, non- medium-contactClamps1.4301 Electronic adapterMaterials, non- medium-contactClamps1.4301 Electronic adapterMaterials, non- medium-contactClamps1.4301 Electronic adapterMaterials, non- medium-contactClamps1.4301 Electronic adapterMaterials, non- medium-contactClamps1.4301 Electronic adapterSupply voltage1830 V DCPower consumption2.1 WAnalog output420 mA / max. load 500 Ω or 010 V / min. load 1 kΩ	Conneotion	- /						
rate device or limiters available on request)Metering ranges0.1100 l/min for details, see table "Ranges"Measurement accuracy±3 % of the measured valueRepeatability±1 % of full scale valuePressure lossmax. 0.5 barPressure lossmax. 0.5 barPressure cesistancePN 16 barMedium temperature0+60 °CMedium temperature-20+80 °CMaterials medium-contactHousingPPS (Fortron 1140L4)RotorPVDF Clamps1.4310 optionally: titanium or Hastelloy®Bearing Bearing AxisIglidur X AxisAxisCeramic Zr02-TZP SealSealFKMMaterials, non- medium-contactClamps1.4301 Electronic adapterGlass MagnetMineral glass, hardenedMagnet RingSamarium-Cobalt RingRing POMPOMSupply voltage1830 V DCPower consumption420 mA / max. load 500 Ω or 010 V / min. load 1 kΩ		(other threaded, crimped, and plug-in						
Metering ranges0.1.100 l/min for details, see table "Ranges"Measurement accuracy±3 % of the measured valueRepeatability±1 % of full scale valuePressure lossmax. 0.5 barPressure resistancePN 16 barMedium temperature0+60 °CStorage temperature-20+80 °CMaterials medium-contactHousingPPS (Fortron 1140L4)RotorPVDFClamps1.4310 optionally: titanium or Hastelloy®Materials, non- medium-contactClamps1.4301 Electronic adapterMaterials, non- medium-contactClamps1.4301 Electronic shousingStange temperature1.4301 Electronic shousingStainless steel 1.4305Materials, non- medium-contactClamps1.4301 Electronic adapterMaterials, non- medium-contactClamps1.4301 Electronic adapterMaterials, non- medium-contactClamps1.4301 Electronic adapterSupply voltage1830 V DCPower consumption11 WAnalog output420 mA / max. load 500 Ω or 010 V / min. load 1 kΩ		connections, connections with constant flow						
InstantionFor details, see table "Ranges"Measurement accuracy±3 % of the measured valueRepeatability±1 % of full scale valuePressure lossmax. 0.5 barPressure resistancePN 16 barMedium temperature0+60 °CMaterials medium-contact-20+80 °CKotorPVDFClamps1.4310 optionally: titanium or Hastelloy®Bearing Bearing AxisIglidur X AxisAxisCeramic Zr02-TZP SealFKMMaterials, non- medium-contactClamps1.4301 Electronic adapter Electronics housing1.4301 Stainless steel 1.4305Materials, non- medium-contactClampsMaterials, non- medium-contactClamps <th></th> <th></th> <th>available on request)</th>			available on request)					
Measurement accuracy±3 % of the measured valueRepeatability±1 % of full scale valuePressure lossmax. 0.5 barPressure resistancePN 16 barMedium temperature0+60 °CStorage temperature-20+80 °CMaterials medium-contactHousingPPS (Fortron 1140L4) RotorRotorPVDFClamps1.4310 optionally: titanium or Hastelloy®Bearing Bearing BearingIglidur X AxisAxis ClampsCeramic Zr02-TZP SealStainless steel 1.43051.4301 Blass hardened hardenedMaterials, non- medium-contactClamps1.4301 Blass hardenedMaterials, non- medium-contactClamps1.4301 Blass ceramic Zr02-TZP SealSupply voltage1830 V DCPower consumption420 mA / max. load 500 Ω or 010 V / min. load 1 kΩ	Metering ranges	0	Dennes					
accuracy±1 % of full scale valueRepeatability±1 % of full scale valuePressure lossmax. 0.5 barPressure resistancePN 16 barMedium temperature0+60 °CStorage temperature-20+80 °CMaterials medium-contactHousingPPS (Fortron 1140L4)RotorPVDFClamps1.4310 optionally: titanium or Hastelloy®Bearing SealIglidur X AxisClamps1.4301 Electronic adapterElectronic adapter Electronics housingCW614N nickelled 1.4305Beas GlassMineral glass, hardenedMagnet RingSamarium-Cobalt RingRingPOMSupply voltage1830 V DCPower consumption420 mA / max. load 500 Ω or 010 V / min. load 1 kΩ	N		0					
Repeatability±1 % of full scale valuePressure lossmax. 0.5 barPressure resistancePN 16 barMedium temperature0+60 °CStorage temperature-20+80 °CMaterials medium-contactHousingPPS (Fortron 1140L4)RotorPVDFClamps1.4310 optionally: titanium or Hastelloy®BearingIglidur XAxisCeramic Zr02-TZPSealFKMMaterials, non-medium-contactClamps1.4301BearingIglidur XAxisCeramic Zr02-TZPSealFKMStanageClamps1.4301Electronic adapterCW614N nickelledElectronics housingStainless steel1.4305GlassMineral glass, hardenedMagnetMagnetSamarium-CobaltRingPOMSupply voltage1830 V DCPower consumption420 mA / max. load 500 Ω or 010 V / min. load 1 kΩ		±3 % of the measured	a value					
Pressure lossmax. 0.5 barPressure resistancePN 16 barMedium temperature0+60 °CStorage temperature-20+80 °CMaterials medium-contactHousingPPS (Fortron 1140L4) RotorMaterials medium-contactHousingPVDF ClampsMaterials, non- medium-contactClamps1.4310 optionally: titanium or Hastelloy®Materials, non- medium-contactClamps1.4301 Electronic adapterMaterials, non- medium-contactClamps1.4301 BearingMaterials, non- medium-contactClamps1.4301 Electronic shousingStainless steel 1.43051.4305 GlassStainless steel 1.4305Supply voltage1830 V DCPOMPower consumption420 mA / max. load 500 Ω or 010 V / min. load 1 kΩ	-	±1 % of full scale valu						
Pressure resistancePN 16 barMedium temperature0+60 °CStorage temperature-20+80 °CMaterials medium-contactHousingPPS (Fortron 1140L4)RotorPVDF Clamps1.4310 optionally: titanium or Hastelloy®Bearing SealIglidur X AxisCeramic Zr02-TZP SealMaterials, non- medium-contactClamps1.4301 Electronic adapterClamps1.4301Electronics housing GlassStainless steel 1.4305Magnet RingSamarium-Cobalt RingSupply voltage1830 V DCPower consumption420 mA / max. load 500 Ω or 010 V / min. load 1 kΩ	• •							
resistance A								
temperature-20+80 °CStorage temperature-20+80 °CMaterials medium-contactHousingPPS (Fortron 1140L4)RotorPVDFClamps1.4310 optionally: titanium or Hastelloy®BearingIglidur X AxisCeramic Zr02-TZP SealFKMMaterials, non- medium-contactClampsImage: International systemClampsImage: International systemClampsImage: International systemClampsImage: International systemClampsImage: International systemClampsImage: International systemStainless steel 1.4305Image: International systemSamarium-Cobalt RingImage: International systemSamarium-Cobalt 		I N TO Dai						
Storage temperature-20+80 °CMaterials medium-contactHousingPPS (Fortron 1140L4)RotorPVDFClamps1.4310 optionally: titanium or Hastelloy®BearingIglidur X AxisCeramic Zr02-TZP SealFKMMaterials, non- medium-contactClampsItelectronic adapter Electronics housingCW614N nickelledElectronics housing GlassStainless steel 1.4305Supply voltage1830 V DCPower consumption420 mA / max. load 500 Ω or 010 V / min. load 1 kΩ	Medium	0+60 °C						
temperature Materials Materials Housing Housing Housing Housing Housing Housing Housing Housing PPS (Fortron 1140L4) Rotor PVDF Clamps 1.4310 optionally: titanium or Hastelloy® Bearing Iglidur X Axis Ceramic Zr0 ₂ -TZP Seal FKM Materials, non- medium-contact Clamps I.4301 Electronic adapter Electronics housing Clanps I.4301 Electronics housing Class Mineral glass, hardened Magnet Ring POM Supply voltage 1830 V DC Power consumption Analog output 420 mA / max. load 500 Ω or 010 V / min. load 1 kΩ	temperature							
Materials medium-contactHousingPPS (Fortron 1140L4)RotorPVDFClamps1.4310 optionally: titanium or Hastelloy®BearingIglidur XAxisCeramic Zr02-TZP SealSealFKMMaterials, non- medium-contactClamps1.4301Electronic adapterElectronics housingStainless steel 1.4305GlassMineral glass, hardenedMagnetSamarium-Cobalt RingPower consumption1830 V DCPower consumption420 mA / max. load 500 Ω or 010 V / min. load 1 kΩ	•	-20+80 °C						
medium-contact(Fortron 1140L4)RotorPVDFClamps1.4310 optionally: titanium or Hastelloy®BearingIglidur XAxisCeramic Zr02-TZP SealSealFKMMaterials, non- medium-contactClamps1.4301Electronic adapter Electronics housingClassMineral glass, hardenedMagnetSamarium-Cobalt RingPower consumption1830 V DCPower consumption420 mA / max. load 500 Ω or 010 V / min. load 1 kΩ	•							
RotorPVDFClamps1.4310 optionally: titanium or Hastelloy®BearingIglidur XAxisCeramic Zr02-TZPSealFKMMaterials, non- medium-contactClamps1.4301Electronic adapterElectronics housingStainless steel 1.4305GlassMineral glass, hardenedMagnetSamarium-Cobalt RingPower consumption1830 V DCPower consumption420 mA / max. load 500 Ω or 010 V / min. load 1 kΩ		Housing						
Clamps1.4310 optionally: titanium or Hastelloy®BearingIglidur XAxisCeramic Zr02-TZPSealFKMMaterials, non- medium-contactClamps1.4301Electronic adapterClamps1.4301Electronic adapterCW614N nickelledElectronics housingStainless steel 1.4305GlassMineral glass, hardenedMagnetSamarium-Cobalt RingPower consumption18.30 V DCPower consumption4.20 mA / max. load 500 Ω or 010 V / min. load 1 kΩ	medium-contact	Datar						
Materials, non-medium-contact Glamps 1.4301 Materials, non-medium-contact Clamps 1.4301 Electronic adapter CW614N nickelled Electronics housing Stainless steel 1.4305 Glass Mineral glass, hardened Magnet Samarium-Cobalt Ring POM Supply voltage 1830 V DC Power consumption 420 mA / max. load 500 Ω or 010 V / min. load 1 kΩ								
titanium or Hastelloy®BearingIglidur XAxisCeramic Zr02-TZPSealFKMMaterials, non- medium-contactClamps1.4301Electronic adapterCW614N nickelledElectronics housingStainless steel 1.4305GlassMineral glass, hardenedMagnetSamarium-Cobalt RingPower consumption1830 V DCPower consumption<1 WAnalog output420 mA / max. load 500 Ω or 010 V / min. load 1 kΩ		Clamps						
Bearing Axis Iglidur X Ceramic Zr0 ₂ -TZP Seal Materials, non- medium-contact Clamps 1.4301 Electronic adapter CW614N nickelled Electronics housing Stainless steel 1.4305 Glass Mineral glass, hardened Magnet Samarium-Cobalt Ring POM Supply voltage 18.:30 V DC Power consumption 4.:20 mA / max. load 500 Ω or 0.:10 V / min. load 1 kΩ								
Axis Ceramic Zr02-TZP Seal FKM Materials, non- medium-contact Clamps 1.4301 Electronic adapter CW614N nickelled Electronics housing Stainless steel 1.4305 Glass Mineral glass, Materials, non- medium-contact Magnet Samarium-Cobalt Electronics housing Stainless steel 1.4305 Glass Mineral glass, hardened Magnet Samarium-Cobalt Ring Power <1 W consumption 420 mA / max. load 500 Ω or 010 V / min. load 1 kΩ			Hastelloy®					
Seal FKM Materials, non- medium-contact Clamps 1.4301 Electronic adapter CW614N nickelled Electronics housing Stainless steel 1.4305 Glass Mineral glass, hardened Magnet Samarium-Cobalt Ring POM Supply voltage 18.30 V DC Power consumption <1 W Analog output 420 mA / max. load 500 Ω or 010 V / min. load 1 kΩ		Bearing	Iglidur X					
Materials, non- medium-contact Clamps 1.4301 Electronic adapter CW614N nickelled Electronics housing Stainless steel 1.4305 Glass Mineral glass, hardened Magnet Samarium-Cobalt Ring POM Supply voltage 18.30 V DC Power consumption <1 W Analog output 420 mA / max. load 500 Ω or 010 V / min. load 1 kΩ		Axis	Ceramic Zr02-TZP					
medium-contact Electronic adapter CW614N nickelled Electronics housing Stainless steel 1.4305 Glass Mineral glass, hardened Magnet Samarium-Cobalt Ring POM Supply voltage 18.30 V DC Power consumption <1 W Analog output 420 mA / max. load 500 Ω or 010 V / min. load 1 kΩ		Seal	FKM					
Electronic adapter Stainless steel 1.4305 Glass Glass Mineral glass, hardened Magnet Samarium-Cobalt Ring POM Supply voltage 1830 V DC Power < 1 W consumption 420 mA / max. load 500 Ω or 010 V / min. load 1 kΩ	,	Clamps	1.4301					
1.4305 Glass Mineral glass, hardened Magnet Samarium-Cobalt Ring POM Supply voltage 1830 V DC Power consumption < 1 W Analog output 420 mA / max. load 500 Ω or 010 V / min. load 1 kΩ	medium-contact	Electronic adapter	CW614N nickelled					
Analog output hardened Magnet Samarium-Cobalt Ring POM Supply voltage 1830 V DC Power < 1 W consumption < 1 W Analog output 420 mA / max. load 500 Ω or 010 V / min. load 1 kΩ		Electronics housing						
Magnet Samarium-Cobalt Ring POM Supply voltage 1830 V DC Power < 1 W consumption < 1 W Analog output 420 mA / max. load 500 Ω or 010 V / min. load 1 kΩ		Glass	Mineral glass,					
Ring POM Supply voltage 1830 V DC Power < 1 W consumption Analog output 420 mA / max. load 500 Ω or 010 V / min. load 1 kΩ			hardened					
Supply voltage 18.30 V DC Power < 1 W consumption Analog output 420 mA / max. load 500 Ω or 010 V / min. load 1 kΩ		Magnet	Samarium-Cobalt					
Power < 1 W consumption 420 mA / max. load 500 Ω or 010 V / min. load 1 kΩ		Ring	POM					
consumption Analog output 420 mA / max. load 500 Ω or 010 V / min. load 1 kΩ	Supply voltage							
010 V / min. load 1 kΩ		< 1 W						
Switching output transistor output "push-pull"	Analog output							
	Switching output	transistor output "pus	h-pull"					

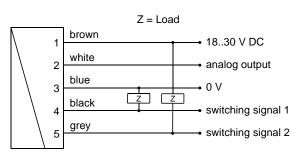
Members of GHM GROUP: GREISINGER | HONSBERG | Martens |


	(resistant to short circuits and polarity reversal) I _{out} = 100 mA max.			
Hysteresis	adjustable, position of the hysteresis depends on minimum or maximum			
Display	backlit graphical LCD-Display (transreflective), extended temperature range -20+70 °C, 32 x 16 pixels, background illumination, displays value and unit, flashing LED signal lamp with simultaneous message on the display.			
Electrical connection	for round plug connector M12x1, 5-pole			
Ingress protection	IP 67 / (IP 68 when oil-filled)			
Weight	OMNI-RRI-010 approx. 0.4 kg			
	OMNI-RRI-025 approx. 0.7 kg			
Conformity	CE			

Signal output curves

Value x = Begin of the specified range = not specified range

Voltage output


Other characters on request.

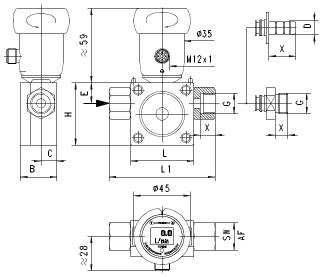
Ranges

Metering ran	0 71	Q _{max} I/min (H₂O)
0.1 1.5	5 OMNI-RRI-0100	20 1.8
0.2 10.0	OMNI-RRI-0100	50 12.0
0.4 12.0	OMNI-RRI-0100	70 14.4
2.0 30.0	OMNI-RRI-0250	80 36.0
3.0 60.0	OMNI-RRI-0251	20 72.0
4.0 100.0	OMNI-RRI-0251	60 120.0

The measured values were determined with horizontal flow (OMNI electronics upwards) using water at 25 °C.

Wiring

Connection example: PNP NPN



connector M12x1

See separate wiring at C and C1 option in the separate descriptions.

Before the electrical installation, it must be ensured that the supply voltage corresponds to the data sheet. The use of shielded cabling is recommended.

Dimensions

Threaded connection

G	DN	Types	H/L	L1	в	С	Е	Х	SW
G ³ / ₈	10	RRI-010G	50	84	29	12.5	16.5	12	22
G ³ / ₈ A		RRI-010A						14	
G 1	25	RRI-025G	70	110	53	23.0	27.5	18	38
G 1 A		RRI-025A	1	122	1				
NPT three	NPT threads on request								

Members of GHM GROUP: GREISINGER | HONSBERG | Martens | IMTRON | / Jelta - IVAL.CO

Hose nozzle connection

D	DN	Types	H/L	L1	в	С	E	X
Ø11	10	RRI-010T	50	96	29	12.5	16.5	21
Ø30	25	RRI-025T	70	176	53	23.0	27.5	45

Gooseneck option

A gooseneck (optional) between the electronics head and the primary sensor provides freedom in the orientation of the sensor. This option simultaneously provides thermal decoupling between the two units

Handling and operation

Installation

The Rototron device is installed in the pipework with the aid of the rotatable adapter pieces. If necessary, the adapters can be removed from the body of the housing after the stainless steel clips have been removed from the housing. Before reinstalling, it should be ensured that both the adapter with the O-ring and the sealing surface in the body are clean and undamaged. The adapters should be fitted carefully in the housing (it is best to turn them), so that the O-ring is not damaged.

With this flow sensor, there is no need for run-in and run-out sections. However, it should be ensured that the flow sensor is at all times filled with medium. Any preferred installation position is possible, but the best possible venting position should be chosen (rotor axis horizontal, flow horizontal or from bottom to top).

Air bubbles affect the measurement results. For filling processes, the valve should be installed behind the sensor. A running up time of approx. 0.5 seconds and a running down time of approx. 3 seconds should be noted.

Programming

The annular gap of the programming ring can be turned to positions 1 and 2. The following actions are possible:

Set to 1 = continue (STEP) Set to 2 = modify (PROG)

Neutral position between 1 and 2

The ring can be removed to act as a key, or turned through 180 $^\circ$ and replaced to create a programming protector.

Operation is by dialog with the display messages, which makes its use very simple.

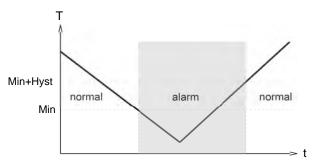
Starting from the normal display (present value and unit), if 1 (STEP) is repeatedly selected, then the display shows the following information in this order:

Display of the parameters, using position 1

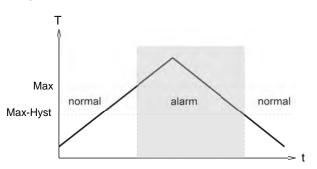
- Switching value S1 (switching point 1 in the selected unit)
- Switching characteristic of S1 MIN = Monitoring of minimum value
 - MAX = Monitoring of maximum value Hysteresis 1 (hysteresis value of S1 in the set
- Members of GHM GROUP: GREISINGER | HONSBERG | Martens |

- unit)
- Switching value S2Switching characteristic of S2
- Hysteresis 2
- Trysteresis 2
 Code
- After entering the **code 111**, further parameters can be defined:
- Filter (settling time of the display and output)
- Physical unit (Units)
 Output: 0..20 mA or 4..20 mA
- 0/4 mA (measured value corresponding to 0/4 mA)
- 20 mA (measured value corresponding to 0/4 mA)
 20 mA (measured value corresponding to 20 mA)

For models with a voltage output, replace 20 mA accordingly with 10 V.


Edit, using position 2

If the currently visible parameter is to be modified:


- Turn the annular gap to position 2, so that a flashing cursor appears which displays the position which can be modified.
- By repeatedly turning to position 2, values are increased; by turning to position 1, the cursor moves to the next digit.
- Leave the parameter by turning to position 1 (until the cursor leaves the row); this accepts the modification.
- If there is no action within 30 seconds, the device returns to the normal display range without accepting the modification.

The limit switches S1 and S2 can be used to monitor minimal or maximal.

With a minimum-switch, falling below the limit value causes a switchover to the alarm state. Return to the normal state occurs when the limit value plus the set hysteresis is once more exceeded.

With a maximum-switch, exceeding the limit value causes a switchover to the alarm state. Return to the normal state occurs when the measured value once more falls below the limit value minus the set hysteresis.

The change to the alarm state is indicated by the integrated red LED and a cleartext in the display.

While in the normal state the switching outputs are at the level of the supply voltage; in the alarm state they are at 0 V, so that a wire break would also display as an alarm state at the signal receiver.

VAL.CO

IMTRON | / Jelta OEM |

Overload display

Overload of a switching output is detected and indicated on the display ("Check S 1 / S 2"), and the switching output is switched off.

Simulation mode

To simplify commissioning, the sensor provides a simulation mode for the analog output. It is possible to create a programmable value in the range 0..26.0 mA at the output (without modifying the process variable). This allows the wiring run between the sensor and the downstream electronics to be tested during commissioning. This mode is accessed by means of Code 311.

Factory settings

After modifying the configuration parameters, it is possible to reset them to the factory settings at any time using Code 989

Ordering code

The basic device is ordered e.g. RRI-010... with electronics e.g. OMNI-RRI-010...

RF	1 RI-		2.	3.	4.	5.	6.	7.	8.	9. E	
0	MNI-RRI	-	10.	11		12. S	13.	14.			
		-				3					
O=C	Option										
1.	Nomin	al v	width								
	010		DN 1	-							
	025		DN 2	-							
2.	Mecha	nic									
	G		fema								
	A			threa							
	Т			nozz							
3.	Conne	cti			l						
	V	~	PVD		• •						
	M		CW6		nick	elled					
-	K	0									
4.	Housi	ng I		iai							
	Q V		PPS PVD	_							
	A	\circ					* ~ ~ ~ ~		1		
5.						sparer	nt cove	1930			
э.	Inward	15 1	Ø 2.		g						
	020		Ø 2. Ø 5.	-							
	030		Ø 7.	-							
	080		Ø 7. Ø 8.								•
	120		Ø 0. Ø12.	-							•
	160		Ø12. Ø16.	-							•
6.	Seal m	nate		0							
	V		FKM								
	E	0	EPD	М							
	N	0	NBR								
7.	Rotor										
	10		with	10 cla	amp	s					
	02	0	with		•						
	05		with	5 cla	· ·						
8.	Materi	al f	or cla	mps	•						
	К		1.43	10							
	Т	0	titani	um							
	Н	0	Hast	elloy®	>						
9.	Conne	cti	on foi								

	E		electronics		
10.	For no	miı	nal width		
	010		DN 10		
	025		DN 25		
11.	Analog	j ol	utput		
	I		current output 0/420 mA		•
	U	О	voltage output 0/210 V		٠
	К		ohne	•	
12.	Electri	cal	connection		
	S		for round plug connector M12x1, 5-pole		
13.	Option	1			
	Н		gooseneck		
	0	0	tropical model - oil-filled version for heavy duty or external use		
14.	Option	2			
	С	0	Counter C	_	
	C1	0	Counter C1		

Options

Counter C (hardware and software option): Preset Counter with external reset option, complementary switching outputs and actual value display (modified wiring diagram!)

Counter C1 (software option): Instantaneous value display with analogue output, pulsevolume output and totalizer

Rotor with titanium clamps •

Accessories

- Cable/round plug connector (KB...) . see additional information "Accessories"
- Device configurator ECI-1
- Mechanical connection pieces with non-return valve, filter, constant flow device or customer-specific requirements available on request

. • •

Flow Transmitter / Switch OMNI-RRH

- Uncomplicated measurement of flow rates
- Metal housing with Hall sensor
- Working pressure up to 100 bar
- Long working life thanks to high quality ceramic axis and special plastic bearing
- Run-in and run-out sections are not necessary.
- Modular construction with various . connection systems
- Plug-in and rotatable connections
- Analog output 4..20 mA or 0..10 V
- Two programmable switches •
- Graphical LCD display, backlit, can be read in sunlight and in the dark
- Selectable units in the display
- Programmable parameters via rotatable, removable ring
- (programming protection) Electronics housing with non-scratch, chemically
- resistant glass Rotatable electronic housing for best reading position
- Designed for industrial use
- Small, compact construction .
- Simple installation •
- Optionally, non-return valve, filter, constant flow rate device in the connections

Characteristics

The flow meter consists of a spinner which is rotated by the flowing medium. The rotor's rotational speed is proportional to the flow volume per unit time. The rotor is fitted with magnets. A Hall sensor records the rotational speed, which is proportional to the flow rate.

The OMNI transducer located on the sensor has a backlit graphics LCD display which is very easy to read, both in the dark and in bright sunlight. The graphics display allows the presentation of measured values and parameters in a clearly understandable form. The measured values are displayed to 4 places, together with their physical unit, which may also be modified by the user. The electronics have an analog output (4..20 mA or 0..10 V) and two switching outputs, which can be used as limit switches for monitoring minimal or maximal, or as two-point controllers. The switching outputs are designed as push-pull drivers, and can therefore be used both as PNP and NPN outputs. Exceeding limit values is signalled by a red LED which is visible over a long distance, and by a cleartext in the display. The stainless steel case has a hardened non-scratch mineral glass pane. It is operated by a programming ring fitted with a magnet, so there is no need to open the operating controls housing, and its leakproofness is permanently ensured.

By turning the ring to right or left, it is simple to modify the

parameters (e.g. switching point, hysteresis...). To protect from unintended programming, it can be removed, turned through 180 ° and replaced, or completely removed, thus acting as a key.

OPTION C:

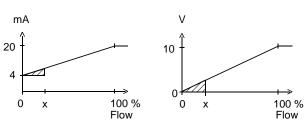
Preset Counter with external reset option, complementary switching outputs and actual value display.

OPTION C1:

Instantaneous value display with analogue output, pulse-volume output and totalizer

Technical data

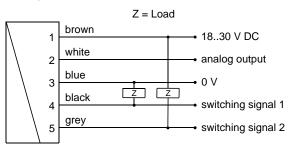
Sensor	Hall element						
Nominal width	DN 10 (OMNI-RRH-0	10)					
	DN 25 (OMNI-RRH-02	25)					
Process	female thread G ³ / ₈ , G 1						
connection	male thread G ³ / ₈ A, G 1 A						
	hose nozzle Ø11, Ø30						
	(other threaded, crimped, and plug-in connections, connections with constant flow						
	rate device or limiters available on request)						
Metering ranges	0.1100 l/min						
motoring rangee	for details, see table "	Ranges"					
Measurement	±3 % of the measured	l value					
accuracy							
Repeatability	±1 % of full scale valu	e					
Pressure loss	max. 0.5 bar						
Pressure	PN 100 bar						
resistance							
Medium	0+70 °C, with gooseneck 0+100 °C						
temperature							
Storage	-20+70 °C						
temperature		OWC4 4NL sielselle d					
Materials medium-contact	Housing	CW614N nickelled or 1.4305					
	Rotor	PVDF with magnets,					
		glued with epoxy re- sin					
	Bearing	Iglidur X					
	Axis	ceramic Zr02-TZP					
	Seal	FKM					
Materials, non-	Clamps	1.4301					
medium-contact	Electronic adapter	CW614N nickelled					
	Electronics housing	stainless steel					
	Ū Ū	1.4305					
	Glass	mineral glass, har- dened					
	Magnet	samarium-Cobalt					
	Ring	POM					
Supply voltage	1830 V DC						
Power	< 1 W						
consumption							
Analog output	420 mA / max. load 010 V / min. load 1 k						
Switching output	transistor output "pusl	n-pull"					



	(resistant to short circuits and polarity reversal) I _{out} = 100 mA max.					
Hysteresis	adjustable, position of the hysteresis depends on minimum or maximum					
Display	backlit graphical LCD-Display (transreflective), extended temperature range -20+70 °C, 32 x 16 pixels, background illumination, displays value and unit, flashing LED signal lamp with simultaneous message on the display.					
Electrical connection	for round plug connector M12x1, 5-pole					
Ingress protection	IP 67 / (IP 68 when oil-filled)					
Weight	OMNI-RRH-010 approx. 0.8 kg OMNI-RRH-025 approx. 2.1 kg					
Conformity	CE					

Signal output curves

Current output


Other characters on request.

Ranges

Metering range I/min (H ₂ O)	Types	Q _{max} I/min (H ₂ O)
0.1 1.5	OMNI-RRH-010020	1.8
0.2 10.0	OMNI-RRH-010050	12.0
0.4 12.0	OMNI-RRH-010070	14.4
2.0 30.0	OMNI-RRH-025080	36.0
3.0 60.0	OMNI-RRH-025120	72.0
4.0100.0	OMNI-RRH-025160	120.0

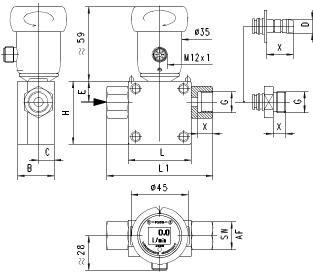
The measured values were determined with horizontal flow (OMNI electronics upwards) using water at 25 °C.

Wiring

Connection example: PNP NPN

connector M12x1

See separate wiring at C and C1 option in the separate descriptions.


Before the electrical installation, it must be ensured that the supply voltage corresponds to the data sheet. The use of shielded cabling is recommended.

Members of GHM GROUP: GREISINGER | HONSBERG | Martens | IMTRON | / Jelta - IVAL.CO ghm_pi-ho-sm-flow-rotor_inline_model_e V1.03-01

Value x = Begin of the specified range = not specified range

Dimensions

Threaded connection

G	DN	Types	H/L	L1	в	С	Е	Х	SW
G ³ / ₈	10	RRH-010G	50	84	29	12.5	16.5	12	22
G ³ / ₈ A		RRH-010A	1					14	
G 1	25	RRH-025G	70	110	53	23.0	27.5	18	38
G1A		RRH-025A		122	-				
NPT threads on request									

Hose nozzle connection

D	DN	Types	H/L	L1	в	С	E	Х
Ø11	10	RRH-010T	50	96	29	12.5	16.5	21
Ø30	25	RRH-025T	70	176	53	23.0	27.5	45
Custom specific connectors on request								

Gooseneck option

A gooseneck (optional) between the electronics head and the sensor primary provides freedom in the orientation of the sensor. This option simultaneously provides thermal decoupling between the two units

Handling and operation

Installation

The Rototron device is installed in the pipework with the aid of the rotatable adapter pieces. If necessary, the adapters can be removed from the body of the housing after the stainless steel clips have been removed from the housing. Before reinstalling, it should be ensured that both the adapter with the O-ring and the sealing surface in the body are clean and undamaged. The adapters should be fitted carefully in the housing (it is best to turn them), so that the O-ring is not damaged.

With this flow sensor, there is no need for run-in and run-out sections. However, it should be ensured that the flow sensor is at all times filled with medium. Any preferred installation position is possible, but the best possible venting position should be chosen (rotor axis horizontal, flow horizontal or from bottom to top).

Air bubbles affect the measurement results significantly. For filling processes, the valve should be installed behind the sensor. A running up time of approx. 0.5 seconds and a running down time of approx. 3 seconds should be noted.

Programming

The annular gap of the programming ring can be turned to positions 1 and 2. The following actions are possible:

Set to 1 = continue (STEP) Set to 2 = modify (PROG)

Neutral position between 1 and 2

The ring can be removed to act as a key, or turned through 180 ° and replaced to create a programming protector.

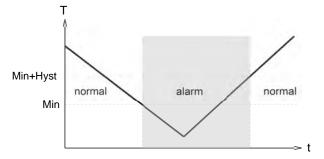
Operation is by dialog with the display messages, which makes its use very simple.

Starting from the normal display (present value and unit), if 1 (STEP) is repeatedly selected, then the display shows the following information in this order:

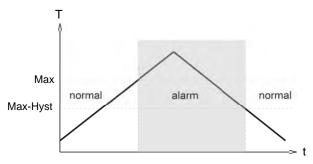
Display of the parameters, using position 1

- Switching value S1 (switching point 1 in the selected unit)
- Switching characteristic of S1 .
 - MIN = Monitoring of minimum value
 - MAX = Monitoring of maximum value
- Hysteresis 1 (hysteresis value of S1 in the set unit)
- Switching value S2
- Switching characteristic of S2
- Hysteresis 2 .
- Code
 - After entering the Code 111, further parameters can be defined:
- Filter (settling time of the display and output) .
- Physical unit (Units) •
- Output: 0..20 mA or 4..20 mA •
- 0/4 mA (measured value corresponding to 0/4 mA)
- 20 mA (measured value corresponding to 20 mA)

For models with a voltage output, replace 20 mA accordingly with 10 V.


Edit, using position 2

If the currently visible parameter is to be modified:


- Turn the annular gap to position 2, so that a flashing cursor appears which displays the position which can be modified.
- By repeatedly turning to position 2, values are increased; by turning to position 1, the cursor moves to the next digit.
- Leave the parameter by turning to position 1 (until the cursor leaves the row); this accepts the modification.
- If there is no action within 30 seconds, the device returns to the normal display range without accepting the modification.

The limit switches S1 and S2 can be used to monitor minimal or maximal.

With a minimum-switch, falling below the limit value causes a switchover to the alarm state. Return to the normal state occurs when the limit value plus the set hysteresis is once more exceeded.

With a maximum-switch, exceeding the limit value causes a switchover to the alarm state. Return to the normal state occurs when the measured value once more falls below the limit value minus the set hysteresis.

The change to the alarm state is indicated by the integrated red LED and a cleartext in the display.

While in the normal state the switching outputs are at the level of the supply voltage; in the alarm state they are at 0 V, so that a wire break would also display as an alarm state at the signal receiver.

Overload display

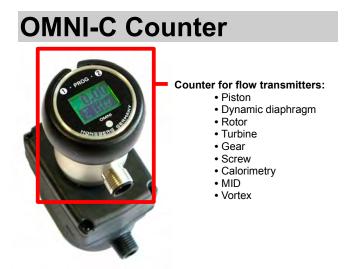
Overload of a switching output is detected and indicated on the display ("Check S 1 / S 2"), and the switching output is switched off.

Simulation mode

To simplify commissioning, the sensor provides a simulation mode for the analog output. It is possible to create a programmable value in the range 0..26.0 mA at the output (without modifying the process variable). This allows the wiring run between the sensor and the downstream electronics to be tested during commissioning. This mode is accessed by means of Code 311.

Factory settings

After modifying the configuration parameters, it is possible to reset them to the factory settings at any time using Code 989.


Ordering code

The basic device is ordered e.g. RRH-010... with electronics z.B. OMNI-RRH-010... 2 3. 4. 5. 6. 7 8. 9. Е RRHv 10 12. 13 OMNI-RRH S O=Option

1.	Nominal	width		
	010	DN 10 - G ³ / ₈		
	025	DN 25 - G 1		
2.	Mechani	cal connection		
	G	female thread		
	А	male thread		
	Т	hose nozzle		
3.	Connection material			
	М	CW614N nickelled		
	K	1.4305		
4.	Housing	material		
	Μ	CW614N		
	К	1.4305		
5.	Inwards	flow drilling		
	020	Ø 2.0		
	050	Ø 5.0		
	070	Ø 7.0		
	080	Ø 8.0		
	120	Ø12.0 •		
	160	Ø16.0 •		
6.	Seal mat			
	V	FKM		
		EPDM		
	N O	NBR		
	КО	Kemraz		
7.	Rotor			
	05	with 5 magnets		
		with 2 magnets		
8.	Rotor ma			
•	V	PVDF		
9.	Connect			
	E	electronics		
10.	For nom	inal width		
	010	DN 10 - G ³ / ₈		
	025	DN 25 - G 1		
11.	Analog o			
		current output 0/420 mA		
		voltage output 0/210 V		
	с с К	without		
12.				
12.				
40	S	for round plug connector M12x1, 5-pole		
13.	Option 1			
	Н	gooseneck		
		tropical model		
	0 0			
	0	use		
14.	Option 2			
		Counter C		
	C1 O	Counter C1		

Members of GHM GROUP: GREISINGER | HONSBERG | Martens | IMTRON | /Jelta III | VAL.CO

- Simple totalisation
- Simple filling counter with programmable end signal
- Control switchover at present value
- Automatic, dynamic change of display unit and decimal places in the graphics display
- Antivalent outputs
- Simple guided menu via graphics display

Characteristics

The totaliser of the OMNI flow rate system enables a totalisation or measurement of consumption for all HONSBERG device families (for fluids and gases) with which the OMNI system is compatible; this is independent of the input signal, pulse or analogue input, and of the measurement process.

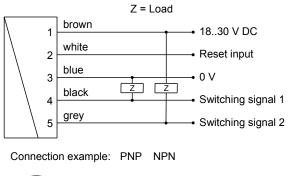
Simple filling control is also possible. Here, the counter can be set to count upwards or downwards.

When the preset point is reached, a switching signal is emitted which is available in antivalent form to two outputs.

Resetting can be carried out by means of a signal input or also by a programming ring.

The state of the counter is indicated in an LCD display with only four digits. Here, the number of decimal places and the unit displayed is continuously matched to the current state of the counter. In this case, the smallest value which can be displayed is 0.001 ml (= 1 µl), and the largest is 9999 m³. The counter therefore has 13 places, of which the four most significant are displayed at any one time. The display resolution at all times is therefore at least 1 per thousand of the displayed value, or better, and this generally exceeds the accuracy of the connected flow transmitter. The nondisplayed digits of the counter are in that case irrelevant to the accuracy of the measurement.

The automatic dynamic changeover of units in the display in relation to the state of the counter makes the value easy to read in spite of a display with only four digits. In addition, user configuration of the counter is unnecessary.


In addition to the totalised value, the present flow rate can be displayed.

Technical data

Counter range	0.000 ml to 9999 m ³ with automatic setting of the decimal places and of the applicable unit.

Switching signal outputs (Pin 4 + 5)	2 x pushpull output, max. 100 mA, resistant to short circuits and polarity reversal, antivalent states, configurable on the device as a wipe or edge signal
Counter reset signal (Pin 2)	Input 1830 V resistant to short circuits and reversed polarity PIN 2, wiper signal, positive or negative edge can be selected locally

Wiring

Before the connecting the supply voltage, it must be ensured that this corresponds with the data sheet! The use of shielded cabling is recommended

Sensor connection to OMNI-C-TA, see dimensions.

Handling and operation

Installation

For assembly, please observe the handling instructions for the different device versions.

After assembly, it is possible to move the sensor head to the most optimal reading position opposite the sensor part using its rotating function.

Programming

On the display, the counter indicates the state of the totaliser as a value and unit. The units mI, L, m^3 are set automatically.

For operation as a totaliser, no configuration by the user is necessary.

To use the other functions, configuration may be required. This is carried out using the programming ring located on the device.

The annular gap of the programming ring can be turned to positions 1 and 2. The following actions are possible:

Set to 1 = continue (STEP) Set to 2 = modify (PROG)

Neutral position between 1 and 2

The ring can be removed to act as a key, or turned through 180 $^\circ$ and replaced to create a programming protector.

Operation is by dialogue with the display messages, which makes its use very simple.

The control display of the present flow rate depends on the metering range of the selected flow transmitter, and has already been set appropriately in the factory (ml/min, l/min, l/h, m³/h). It is activated by turning the ring to position 1

After 10 seconds, the display automatically returns to the totaliser mode.

For operation as a preset counter, the following must be set:

- 1. The preset point
- 2. The type of output signal ("Preset has been reached"): Signal edge / wiper pulse
- width of the wiper pulse, if required

The unit of the preset point: (ml, litre, m³). Starting from the normal display (total and unit), if 1 (Step) is selected repeatedly, then the counter shows the following information:

- Normal display is total and unit (e.g. litre)
- Display of present value (e.g. l/min)
- Preset point incl. type of switching output.
- Code

The code gives access to various input levels into which parameters can be entered (so that this does not occur inadvertently, the code must be entered!).

Code 111:

- Gate time (available only for sensors which transmit frequency)
- Filter time
- Direction of count (pos / neg)
- Unit for switching value reset point
- Decimal place for switching value / reset point
- Switching type for switching value (edge / wiper signal)
- Pulse duration (for wiper signal)
- Reset method (manual / via signal)

Code 100:

• Manual reset for totaliser

The detailed flow chart for operation is available in the "Operating instructions for OMNI-C".

Combination example	5	Gear VHZ	
Vortex CF			0
Calorimetric F (separate data sheet)		Dynamic diaphragm XF	
Calorimetric FG (separate data sheet)			
Calorimetric FIN		-	
Magnetic inductive FIS (separate data sheet)		-	
Piston HD HR MR			
Magnetic inductive MID1			
Panel mounting OMNI-TA (separate data sheet)			
Rotor RR		-	
Turbine RT		-	
Screw VHS			

ghm_pi-ho-sm-flow-rotor_inline_model_e V1.03-01

- Simple totalisation
- Simple filling counter with programmable end signal .
- Control switchover at present value
- Automatic, dynamic change of display unit and decimal places in the graphics display
- Antivalent outputs
- Simple guided menu via graphics display

Characteristics

The totaliser of the OMNI flow rate system enables a totalisation or measurement of consumption for all HONSBERG device families (for fluids and gases) with which the OMNI system is compatible; this is independent of the input signal, pulse or analogue input, and of the measurement process.

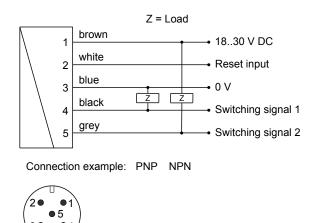
Simple filling control is also possible. Here, the counter can be set to count upwards or downwards.

When the preset point is reached, a switching signal is emitted which is available in antivalent form to two outputs.

Resetting can be carried out by means of a signal input or also by a programming ring.

The state of the counter is indicated in an LCD display with only four digits. Here, the number of decimal places and the unit displayed is continuously matched to the current state of the counter. In this case, the smallest value which can be displayed is 0.001 ml (= 1 µl), and the largest is 9999 m³. The counter therefore has 13 places, of which the four most significant are displayed at any one time. The display resolution at all times is therefore at least 1 per thousand of the displayed value, or better, and this generally exceeds the accuracy of the connected flow transmitter. The nondisplayed digits of the counter are in that case irrelevant to the accuracy of the measurement.

The automatic dynamic changeover of units in the display in relation to the state of the counter makes the value easy to read in spite of a display with only four digits. In addition, user configuration of the counter is unnecessary.


In addition to the totalised value, the present flow rate can be displayed.

Technical data

Counter range	0.000 ml to 9999 m ³ with automatic setting of the decimal places and of the applicable unit.

Switching signal outputs (Pin 4 + 5)	2 x pushpull output, max. 100 mA, resistant to short circuits and polarity reversal, antivalent states, configurable on the device as a wipe or edge signal
Counter reset signal (Pin 2)	Input 1830 V resistant to short circuits and reversed polarity PIN 2, wiper signal, positive or negative edge can be selected locally

Wiring

Before the connecting the supply voltage, it must be ensured that this corresponds with the data sheet! The use of shielded cabling is recommended

Sensor connection to OMNI-C-TA, see dimensions.

Momentary value indicator, transmitter and meter OMNI-C1 electronics

Counter for flow transmitters: Piston Dynamic diaphragm

- Rotor
- Turbine
- Gear
- Screw
- MID Vortex
- Momentary value indicator and totalisation
- Pulse output with adjustable pulse per volume •
- Antivalent outputs
- Analogue output of the momentary value
- Simple guided menu via graphics display

Characteristics

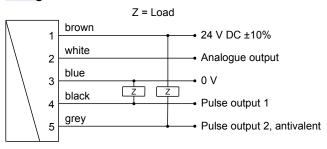
The local OMNI-C1 electronics offers a momentary value indicator and a totalisation of the flow rate quantity.

The momentary value is output at the analogue output as a 4..20 mA signal (or optionally as a 0..10 V signal).

In addition, the electronics has a pulse output, which outputs a pulse after a preset quantity with a duration of 36 ms. The pulse is available at two switching outputs in anitvalent form.

primary displayed value is the flow rate. Using the programming ring, you can temporarily switch to the totalisation.

The state of the totalisation is indicated in an LCD display with only four digits. Here, the number of decimal places and the unit displayed is continuously matched to the current state of the counter. In this case, the smallest value which can be displayed is 0.001 ml (= 1 µl), and the largest is 9999 m³. The counter therefore has 13 places, of which the four most significant are displayed at any one time. The display resolution at all times is therefore at least 1 per thousand of the displayed value, or better, and this generally exceeds the accuracy of the connected flow transmitter. The nondisplayed digits of the counter are in that case irrelevant to the accuracy of the measurement.


The automatic dynamic changeover of units in the display in relation to the state of the counter makes the value easy to read in spite of a display with only four digits. In addition, user configuration of the counter is unnecessary.

Instead of the counter option C1 the counter option C is available (see corresponding datasheet). It offers a totalizer with adjustable preset value and external reset. This allows to realize a filling control application for example. Additionally the actual flow rate value can be displayed, however without an analog output.

Technical data

Counter range	0.000 ml to 9999 m ³ with automatic setting of the decimal places and of the applicable unit
Pulse outputs (Pin 4 + 5)	2 x pushpull output, max. 100 mA, resistant to short circuits and polarity reversal, antivalent statuses, pulse width 36 ms

Wiring

Connection example: PNP NPN

Plug connector M12x1

Before the electrical installation, it must be ensured that the supply voltage corresponds to the data sheet.

The use of shielded cabling is recommended.

Counter C:

Members of GHM GROUP:	GREISINGER	HONSBERG	Martens	L	IMTRON I	<i>lit</i> ohm	VAL.CO
50					ghm_pi-ho-sm-fl	ow-rotor_inline_model_	e V1.03-01

Handling and operation

Installation

For assembly, please observe the handling instructions for the different device versions.

After assembly, it is possible to move the sensor head to the most optimal reading position opposite the sensor part using its rotating function.

Programming

The resetting of the meter to zero takes place through the programming.

The stainless steel case has a hardened non-scratch mineral glass pane. It is operated by a programming ring fitted with a magnet, so there is no need to open the operating controls housing, and its leakproofness is permanently ensured.

By turning the ring to right or left, it is simple to modify the parameters (e.g. switching point, hysteresis...). To protect from unintended programming, it can be removed, turned through 180 $^{\circ}$ and replaced, or completely removed, thus acting as a key.

On the display, the meter indicates the current flow rate as a value and unit. For this purpose, no adjustments by the user are necessary.

To use the other functions, configuration may be required. This is carried out using the programming ring located on the device.

The annular gap of the programming ring can be turned to positions 1 and 2. The following actions are possible:

Set to 1 = continue (STEP) Set to 2 = modify (PROG)

Neutral position between 1 and 2

The ring can be removed to act as a key, or turned through 180 $^\circ$ and replaced to create a programming protector.

Operation is by dialogue with the display messages, which makes its use very simple.

Rotating the ring once to Pos. 1 displays the totaliser status. In the process, the unit is automatically set to the quantity already counted.

After 10 seconds, the display automatically returns to the momentary value mode.

If the ring is turned to position 1 again while the totaliser status is shown, the code input is reached.

The code gives access to various input levels into which parameters can be changed (so that this does not occur inadvertently, the code must be entered!).

Code 100:

Reset for totaliser

Code 111:

Filter	Enables the input of a filter time in multiple levels
	The filter time describes the time after which a volatile change in flow occurs until the display value has adopted the new value
PlsUnit	Enables the input of the unit of the pulse volume (pulse per volume), e.g. cm³, Litre, m³
PisVal	Enables the input of the meter value of the pulse flow (09999)
Output	Enables switching of the analogue output between 020 mA and 420 mA (optionally (010 V and 210 V)
4 mA	Defines the momentary value at which 4 mA should be output
20 mA	Defines the momentary value at which 20 mA should be output

Members of GHM GROUP: GREISINGER | HONSBERG | Martens | IMTRON | Seltaceria | VAL.CO

Combination example	S	Gear VHZ	
Vortex CF.		VHZ	
Calorimetric F (separate data sheet)		Dynamic diaphragm XF	Ø
Calorimetric FG (separate data sheet)			
Calorimetric FIN			
Magnetic inductive FIS (separate data sheet)			
Piston HD HR MR			
Magnetic inductive MID1			
Panel mounting OMNI-TA (separate data sheet)			
Rotor RR			
Turbine RT			
Screw VHS			

ghm_pi-ho-sm-flow-rotor_inline_model_e V1.03-01

Gerätekonfigurator ECI-1

- Vor Ort verwendbar für: - Parameteränderung
 - Firmware-Update
 - Justierung der Ein- und Ausgänge
- Anschließbar über USB

Merkmale

Der Gerätekonfigurator ECI-1 ist ein Interface, das den Anschluss von mikrocontrollergesteuerten HONSBERG-Sensoren an den USB-Port eines Computers gestattet.

In Verbindung mit der Windows-Software "HONSBERG Device Configurator" ermöglicht er

- die Änderung aller Konfigurationseinstellungen des Sensors
- das Auslesen von Messwerten
- die Justage der Ein- und Ausgänge
- Firmware-Updates

Technische Daten

Hilfsspannung	1230 V DC (abhängig vom angeschlosse- nen Sensor) und über USB
Leistungs- aufnahme	< 1 W
Anschluss	
Sensor	Kabelbuchse M12x1, 5-polig, gerade Länge ca. 50 cm
Zuleitung	Gerätestecker M12x1, 5-polig
USB	USB-Buchse Typ B
Betriebs- temperatur	0+50 °C
Lagertemperatur	-20+80 °C
Gehäuse- abmessungen	98 mm (L) x 64 mm (B) x 38 mm (H)
Gehäusewerkstoff	ABS
Schutzart	IP 40

Handhabung und Betrieb

Anschluss

Der Gerätekonfigurator ist für den vorübergehenden Anschluss in der Applikation bestimmt. Er wird zwischen die vorhandene Zuleitung des Sensors und den Sensor geschaltet. Die Versorgung erfolgt über die Sensorversorgung und den USB-Port des Computers. Im inaktiven Zustand (ohne Kommunikation) verhält sich der Konfigurator völlig neutral, alle Signale des Sensors stehen der Applikation weiterhin zur Verfügung. Bei Kommunikation zwischen Computer und Sensor werden die Signalleitungen im Konfigurator aufgetrennt, so dass in diesem Zustand die Ausgangssignale des Sensors nicht zur Verfügung stehen.

Zum Anschluss 4-poliger Zuleitungen ohne Mittelbohrung an den eingebauten 5-poligen Gerätestecker wird der Adapter K04-05 mitgeliefert. 4-polige Zuleitungen mit Mittelbohrung können ohne Adapter verwendet werden.

ECI-1

6

Bestellschlüssel

Gerätekonfigurator (Lieferumfang siehe Abbildung unten)

Lieferumfang:

- 1. Gerätekonfigurator ECI-1
- 2. USB-Kabel
- 3. Adapter K04-05
- 4. Stecker KB05G
- 5. Kabel K05PU-02SG
- 6. Tragekoffer

(Software und Steckernetzteil sind nicht im Lieferumfang enthalten)

Zubehör:

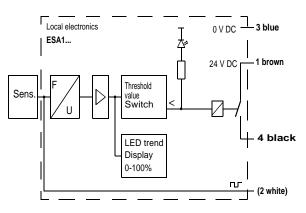
Steckernetzteil 24 V DC	
(mit montiertem Rundsteck- verbinder, 5-polig)	WR24-1

Ersatztelle:	
M12x1-Adapter 4- / 5-polig	K04-05
PUR-Kabel, 5-polig, abgeschirmt mit Rundsteckverbinder M12x1	K05PU-02SG
Rundsteckverbinder M12x1, 5-polig (ohne Kabel)	KB05G

Members of GHM GROUP: GREISINGER | HONSBERG | Martens | IMTRON | /Jelta - VAL.CO

On Site Electronics ESA1

- Compact local display and switching module for RRI / H Flow Sensors
- Switching point displayed optionally
- Switching point can be set without process condition
- Display of the switching value via red LED signal lamp

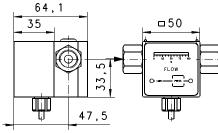

Characteristics

The electronics consist of a primary sensor, which is able to detect the rotor blade of the flow meter (inductive or Hall sensor depending on the material of the transmitter) and a calibratable F/U convertor, which presents the detected frequency on a trend display, and which allows the comparator and therefore the "min switching value" to be set via an adjustable potentiometer. Switch opens when there is a fault (< switching point)

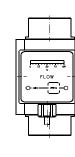
Technical data

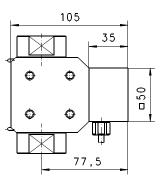
Sensor	see "Ordering code"
Working ranges	
Measurement	
accuracy	see relevant flow meter
Operating pressure	
Operating temperature for the electronics	max. 60 °C
Materials	PA6.6
Supply voltage	24 V DC ±10 %
Power	1,5 W
consumption	
Limit values	normally open (n.o.) (24 V DC, 24 W)
Hysteresis	set to 2 % at the factory
Display	12 LEDs (green)= current value and option to display switching value. LED (red) =< min
Electrical connection	for round plug connector M12x1, 4-pole, cable outlet optionally available
Ingress protection	IP 60

Terminal assignment



Before the electrical installation, it must be checked that the supply voltage corresponds with the data sheet. The "min." relay contact is to be used exclusively for signal voltages. If a higher powered relay is to be actuated, then connect a free-wheeling diode above the power relay, in order to reduce induction spikes.


The changeover contact is depicted in the rest state (no supply voltage). The "in range" status accordingly corresponds to the tensed state. If the power to the sensor is lost, the relay then also returns to the rest state.


Dimensions

ESA1-RR.-010

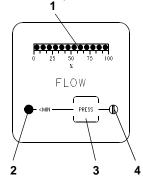
ESA1-RR.-025

Handling and operation

Installation

It should be ensured that the flow meter and the ESA1 electronics are matched to each other (same production number).

The ESA1 electronics must be full inserted into the Rototron flow meter in order to detect the signal securely. For RR.25... there is the option of turning the converter by 90 ° in order to create the most suitable reading position. For RR.10... the position should be stated when ordering).


The stainless steel clamps prevent the electronics from coming away from the base unit, even if there is vibration.

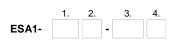
Adjustment

Together with the corresponding flow meters, the ESA1 electronics create an adjustable flow meter with trend display (1). When the switching point is fallen short of, the output goes from 24 V DC to 0 V (open status).

The switching point can be displayed at any time by pressing the "Press" button (3) and can be adjusted by simultaneously turning the potentiometer (4). A red LED (2) indicates when the switching point has been fallen short of.

If the touch key is not actuated, the present value is displayed.

1. Trend display (12 x LED green)


2. <min. display (LED red)

3. Touch key (displays switching point)

4. Potentiometer for setting the min.-signal (simultaneously 3)

Ordering code

The base device is ordered, e.g. RRI-xxx with the signal output E and the evaluation electronics described here e.g. ESA1-RRI-xxx.

O=Option

1.	For types	
	RR	for flow meter RR
2.	Sensor	
	1	inductive (for flow meter RRI)
	Н	hall (for flow meter RRH)
3.	Nominal v	width
	010	for flow meter size DN 10
	025	for flow meter size DN 25
4.	Electrical	connection
	S	for round plug connector M12x1, 4-pole
	КО	cable outlet 2 metres

Options

Ingress protection IP 65

Accessories

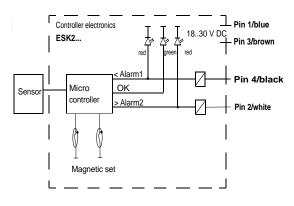
- Cable/round plug connector (KB...) see additional information "Accessories"
- Fixing clamps RR.-010
- Fixing clamps RR.-025

On Site Electronics ESK2

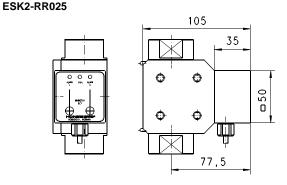
- Controller electronics for RRI / H flow meter
- 2 electronic switching outputs .
- Setting the set points using a magnet
- Switching status display with LEDs

Characteristics

With an inductive or a Hall sensor (with or without bias), the electronics record the rotational movements of a rotor blade. Here, the rotor's rotational speed is proportional to the flow rate. A microcontroller records the frequency, and if the minimum value is fallen short of (ALARM1) or the maximum value is exceeded (ALARM2), it changes over the relevant electronic output.


The transistor outputs are designed in such a way that they can be switched as both an NPN or as a PNP output, without needing to make a change on the device. The status of the outputs is indicated at the front of the device by two red and one green LEDs.

The compact electronics are connected directly to a suitable transmitter (see "Dimensions")


Technical data

Sensor	inductive proximity switch
Working ranges	
Measurement	
accuracy	see relevant flow meter
Operating pressure	
Operating temperature for the electronics	-20+80 °C
Operating temperature	max. 80 °C
Materials	PA6.6
Supply voltage	1830 V DC
Current consumption	< 30 mA (outputs not connected)
Outputs	electronic, connectable as NPN / PNP
Current under load	max. 200 mA / output
Electrical connection	for round plug connector M12x1, 4-pole Optionally cable outlet
Ingress protection	IP 60

Terminal assignment

Dimensions

Handling and operation

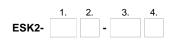
Installation

The ESA2 electronics must be fully inserted into the RR10/25 (Rototron) flow meter in order to detect the signal securely. For RR.25... there is the option of turning the converter by 90 ° in order to create the most suitable reading position. For RR.10... the position should be stated when ordering. The function of the LEDs:

- The green LED lights when the flow rate is greater than alarm 1 and less than Alarm 2 (both outputs are at the supply voltage).
- A red LED lights when the minimum value is fallen short of (Alarm 1) or the maximum value is exceeded (Alarm 2) (associated output has 0 V)
- The red LEDs flash alternately when the microcontroller has a short circuit, or has detected an overload at one of the outputs or an internal error (both outputs show 0 V).

Members of GHM GROUP: GREISINGER | HONSBERG | Martens |

IMTRON | /Jelta DEM | VAL.CO ghm_pi-ho-sm-flow-rotor_inline_model_e V1.03-01



Adjustment

- There are two magnetic areas at the front (magnetic set), with the aid of which the minimum and the maximum values can be set:
- When a magnet is placed on one of the surfaces, the green and the related red LED then flash alternately for 4 seconds. Then both LEDs light simultaneously for 2 seconds.
- If the magnet is removed from the surface during the 2 second period, the currently existing flow rate is saved as the switching value.
- If the magnet is removed earlier or later, then the old value is retained without modification.

Ordering code

The base device is ordered, e.g. RRI-xxx with the signal output E and the electronics described here e.g. ESK2-RRI- xxx.

O=Option

1.	For types	
	RR	for flow meter RR
2.	Sensor	
	I	inductive sensor
	Н	hall sensor
3.	Nominal v	width
	010	for flow meter size DN 10
	020	for flow meter size DN 20
	025	for flow meter size DN 25
4.	Electrical	connection
	S	for round plug connector M12x1, 4-pole
	КО	cable outlet 2 m

Options

Ingress protection IP 65

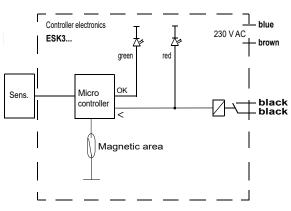
Accessories

- Cable/round plug connector (KB...) see additional information "Accessories"
- Fixing clamps RR.-010
- Fixing clamps RR.-025

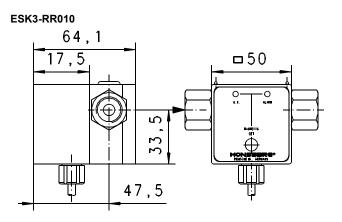
Controller Electronics ESK3

- Controller electronics with 230 V AC supply •
- Switch contact for high loads
- Red / green switching status display .
- Simple to use •

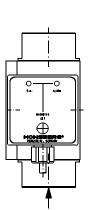
Characteristics

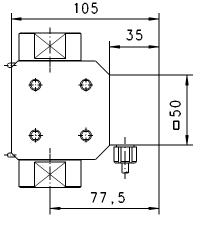

With an inductive or a Hall sensor (with or without bias), the electronics record the rotational movements of a rotor blade. The rotational speed is proportional to the flow rate, and is evaluated by a microcontroller which controls a relay. The present status is indicated by a red and a green LED. The electronics are designed in such a way that for almost any conceivable error, the relay always switches to the safe state (contact open = Alarm), ensuring intrinsic safety.

The controller receives frequency signals and, if the minimum value is fallen short of, it causes a relay to return to the rest state (contact open). The compact electronics are connected directly to a suitable transmitter (see "Dimensions").


Technical data

Sensor	inductive proximity switch
Working ranges	
Measurement	
accuracy	see relevant flow meter
Operating pressure	
Operating temperature for the electronics	-25+60 °C
Materials	PA6.6
Supply voltage	230 V AC
Current	< 4 mA
consumption	
Output	relay contact
Switching voltage	Duration: 30 V DC / 250 V AC (cos φ=1) maximum: 380 V AC / 125 V DC
Switching current	2 A (higher values available on request)
Switch performance	1250 VA / 150 W (cos φ=1)
Electrical connection	Cable 4x0,5 mm²
Ingress protection	IP 64


Wiring



Dimensions

ESK3-RR025

Handling and operation

Installation

The ESA3 electronics must be full inserted into the Rototron flow meter in order to detect the signal securely. For RR.25... there is the option of turning the converter by 90 ° in order to create the most suitable reading position. For RR.10... the position should be stated when ordering). The stainless steel clamp ensures that the electronics remain firmly attached even if there are vibrations.

There are a red and a green LED on the front of the device; they have the following function:

- The green LED lights when the flow rate exceeds the set minimum value (relay is pulled in = contact closed).
- The red LED lights when the minimum flow rate is fallen short of (relay is in rest state = contact open).
- The red LED flashes when an internal error is detected by the microcontroller (relay is in rest state = contact open).

Adjustment

There is a magnetic area on the front (magnetic set), with the aid of which the minimum value can be set as follows:

- When a magnet is placed on this surface, the red and the green LEDs then flash alternately for 4 seconds. Then both LEDs light simultaneously for 2 seconds.
- If the magnet is removed from the surface during the 2 seconds.
 If the currently existing flow rate is saved as the minimum value.
- If the magnet is removed earlier or later, then the old minimum value is retained without modification.

Ordering code

The base device is ordered, e.g. RRI-xxx with the signal output E and the evaluation electronics described here e.g. ESK3-RRI-10 xxx.

	1.	2.	3.	4.
ESK3-	RR			κ

O=Option

1.	For types	5
	RR	for flow meter RR
2.	Sensor	
	I	inductive sensor
	Н	hall sensor
3.	Nominal	width
	010	for flow meter size DN 10
	025	for flow meter size DN 25
4.	Electrica	I connection
	K	cable outlet 1,2 m

Accessories

- Fixing clamps RR.-010
- Fixing clamps RR.-025

Option

LABO transmitter - Temperature up to 150 °C

All LABO transmitters can be used with electronics positioned in a separate area with media temperatures up to $150 \, {}^{\circ}\text{C}$.

OMNI - Tropical model

This OMNI electronic option should be used where temperatures change quickly, or for external installations (the device is filled with oil, and thus prevents condensate formation in the electronics housing, even under adverse circumstances)

ghm_pi-ho-sm-flow-rotor_inline_model_e V1.03-01

Members of GHM GROUP: GREISINGER | HONSBERG | Martens | IMTRON | Deltacet | VAL.CO

ter				
Type ZV	Type ZE	from	HONSBE dirt or as ition of liqu	RG filters are offered for the protection of the device independent components for coarse and fine iids.
	T	For	more infor	mation, see additional product information.
ound plug connector 4 /	5-pin			
		Ord	ering co	de
		Self	-assembly	/
0		KE		<u>.</u>
		1.		
			04 05	4-polig 5-polig
		2.	Steckerat	
			G	gerade
			W	gewinkelt 90 °
► Primary Sensors 010 V 420 mA Frequency				the same data as the OMNI in situ electronics; but panel-mounting variant with IP 67 housing.
010 V 420 mA Frequency				the same data as the OMNI in situ electronics; but panel-mounting variant with IP 67 housing.
010 V 420 mA				
010 V 420 mA Frequency	<image/> <image/>	as a Fun how	n external	panel-mounting variant with IP 67 housing. entical to OMNI-in situ. Connection to the sensor is, e by wire, and so the measurement point and displa
010 V 420 mA Frequency MNI - Remote Primary Sensors 0/210 V 4/020 mA	<image/> <image/>	as a Fun how	n external	panel-mounting variant with IP 67 housing. entical to OMNI-in situ. Connection to the sensor is, e by wire, and so the measurement point and displa
010 V 420 mA Frequency MNI - Remote Primary Sensors 0/210 V 4/020 mA	<image/>	as a Fun how	n external	panel-mounting variant with IP 67 housing. entical to OMNI-in situ. Connection to the sensor is, e by wire, and so the measurement point and displ
010 V 420 mA Frequency MNI - Remote Primary Sensors 0/210 V 4/020 mA	<image/>	as a Fun how	n external	panel-mounting variant with IP 67 housing. entical to OMNI-in situ. Connection to the sensor is, e by wire, and so the measurement point and displ

Members of GHM GROUP: GREISINGER | HONSBERG | Martens | IMTRON | / Jelta - I VAL.CO

contact us

Headquarter

GHM Messtechnik GmbH GHM GROUP CORPORATE Tenter Weg 2-8 42897 Remscheid | GERMANY Phone +49 2191 9672-0 info@ghm-group.de www.ghm-group.de

Centers of Competences

GHM Messtechnik GmbH **GHM GROUP – Greisinger** Hans-Sachs-Straße 26 93128 Regenstauf | GERMANY Phone +49 9402 9383-0 info@greisinger.de | www.greisinger.de

GHM Messtechnik GmbH GHM GROUP – Imtron Carl-Benz-Straße 11 88696 Owingen | GERMANY

GHM GROUP International

Austria

GHM Messtechnik GmbH Office Austria Breitenseer Str. 76/1/36 1140 Vienna | AUSTRIA Phone +43 660 7335603 a.froestl@ghm-messtechnik.de

France

GHM GROUP France SAS Parc des Pivolles 9 Rue de Catalogne 69150 Décines-Charpieu (Lyon) | FRANCE Phone +33 4 72 37 45 30 contact@ghm-group.fr

 Netherlands

 GHM Meettechniek BV

 Zeeltweg 30

 3755 KA Eemnes | NETHERLANDS

 Phone +31 35 53805-40

 Fax +31 35 53805-41

 info@ghm-nl.com | www.ghm-nl.com

GHM Messtechnik GmbH GHM GROUP – Honsberg Tenter Weg 2-8 42897 Remscheid | GERMANY

Delta OHM S.r.l. a socio unico GHM GROUP – Delta OHM Via Marconi 5 35030 Caselle di Selvazzano Padova (PD) | ITALY Phone +39 049 8977150 info@deltaohm.com www.deltaohm.com

Brazil & Latin America

GHM Messtechnik do Brasil Ltda Av. José de Souza Campos, 1073, cj 06 Campinas, SP 13025 320 | BRAZIL Phone +55 19 3304 3408 info@grupoghm.com.br

India

GHM Messtechnik India Pvt Ldt. 209 | Udyog Bhavan | Sonowala Road Gregaon (E) | Mumbai - 400 063 INDIA Phone +91 22 40236235 info@ghmgroup.in | www.ghmgroup.in

South Africa

GHM Messtechnik SA (Pty) Ltd 16 Olivier Street Verwoerdpark, Alberton 1453 SOUTH AFRICA Phone +27 74 4590040 j.grobler@ghm-sa.co.za GHM Messtechnik GmbH GHM GROUP – Martens Kiebitzhörn 18 22885 Barsbüttel | GERMANY

Valco srl **GHM GROUP - VAL.CO** Via Rovereto 9/11 20014 S. Ilario di Nerviano Milano (MI) | ITALY Phone +39 0331 53 59 20 valco@valco.it www.valco.it

Czech Republic / Slovakia

GHM Greisinger s.r.o. Ovci hajek 2/2153 158 00 Prague 5 Nove Butovice | CZECH REPUPLIC Phone +420 251 613828 Fax +420 251 612607 info@greisinger.cz | www.greisinger.cz

Italy for Greisinger & Delta OHM GHM GROUP – Delta OHM Via Marconi 5 35030 Caselle di Selvazzano Padova (PD) | ITALY Phone +39 049 8977150 a.casati@ghm-messtechnik.de

...and more than 100 qualified distributors!

Denmark

GHM Maaleteknik ApS Maarslet Byvej 2 8320 Maarslet | DENMARK Phone +45 646492-00 Fax +45 646492-01 info@ghm.dk | www.ghm.dk

Italy for Honsberg, Martens, Val.co GHM GROUP – Val.co Via Rovereto 9/11 20014 S. Ilario di Nerviano Milano (MI) | ITALY Phone +39 0331 53 59 20 alessandro.perego@valco.it

Visit us at: www.ghm-group.de