

PRODUCT INFORMATION GHM GROUP

Flow. Calorimetry.

Product information Flow - Calorimetry

Characteristics

System

• Calorimetric flow sensors

Evaluation

 Display, switching, Metering. counting, measurement of consumption

Range

2..300 cm/s, 5 ml..10 l/min

Media

· Aqueous media

Pressure resistance

Max. 200 bar

Medium temperature

○ -20..+130 °C

Materials

o 1.4571, (Hastelloy®). Only one material in contact with the medium

Function and benefits

The calorimetric principle of the flow transmitter / switch from HONSBERG is based on two temperature sensors, both in good heat-conducting contact with the medium with simultaneously good heat insulation from one another.

Inline sensor construction principle

One of the sensors is heated to a constant Δ T to the unheated sensor, so that a constant temperature difference between the two temperature sensors is set while the medium being measured is at a standstill. If the medium being measured moves, the thermal energy is extracted from heated temperature sensor and is immediately returned through a regulation until the same difference is provided. The energy required to do so is proportional to the current mass flow of the medium being measured.

Applications

- Flow monitoring
- Dry-run protection
- Cooling water control
- Continuous mixing processes
- Continuous monitoring of very small quantities (in pharmaceutical applications)
- Simultaneous monitoring of flow and temperature possible in one device

In the process, the unheated temperature sensor detects the medium temperature and thereby enables a temperature compensation. In doing so, the flow is even correctly detected in the event of fluctuations of the medium temperature.

Different media influence the response time, because they have different heat conductivity. In general, the following rule applies: the lower the heat conductivity of the medium, the greater the medium flow must be in order to be detected.

With operation of the calorimetric measurement and monitoring principle, the state of the test medium as well as the medium temperature in relation to the desired measurement results play a crucial role. The present standard devices are designed and calibrated for the following parameters: Medium: water, temperature range 0..85 °C.

With a deviating medium consistence, e.g. viscosity or air and gases or enduring temperatures of more than 85 °C or less than 0 °C, we recommend leaving the device configuration according to the individual recommendation of the manufacturer.

Explanation of terms

Temperature gradient = temperature change per time unit of the medium (K/s). With volatile changes of the medium temperature, compensation can only be made within a specific range. The range in which fault-free operation is guaranteed is specified. If this temperature is exceeded by the medium, an error message may be issued by the system for a brief time. On such message can, of course be suppressed by switching delays, however, the switch-on and switch-off time of the system in general will be altered.

Start-up time = the time in which the device reaches its specified operating mode after operating voltage is applied. After switching on the device, you will see all LEDs illuminate. After approximately three seconds the display switches to the adjusted range. Now the switch-off range can be defined.

Switch-on and switch-off time = the time in which the regular measurement parameter is detected after a volatile increase or drop of the flow speed. With a medium temperature of approximately 25 °C and a stainless steel sensor in water as a medium, there is an average switch-on and switch-off time of approximately two seconds. Please observe that this time depends on the operating conditions. With media with poor thermal conductivity or poor sensor materials, slower switching times arise.

Temperature range of the medium = the range in which the calorimetric sensor functions faultlessly.

General installation instructions

As a basic principle, any installation location and position in which the "nose" of the sensor completely protrudes into the flowing media is suitable, see diagram (if the sensor is used for the detection of filled or non-filled tubes, of course this does not apply).

Programmability of parameters

All calorimetric sensors from HONSBERG are a part of the family of intelligent sensors. They have a microcontroller which enables a multitude of parameter changes.

By standard, all three main electronics have the capability of making local changes. In addition, a device configurator can be used to change all saved parameters of a device at any time, if desired or necessary.

EFKP, EFKM EFK2

Switching trigger advance or switching point is adjusted with the potentiometer.

LABO-F012

Pulse programming on pin 2:

Apply the supply voltage level for 1 second and save the current value as the full scale value (for analog outputs) or as a switching value (for limit switches).

FLEX-F

Programming with magnet-clip:

Hold the magnet to the marking for one second and save the present value as the full scale value (for analog outputs) or as a switching value (for limit switches).

OMNI-F

Programming with magnet-ring:

With the aid of the display and of the movable ring, numerous parameters can be conveniently set on the spot.

ECI-3

If required, all parameters can be set at any time on all intelligent sensors, using the ECI-3 device configurator.

Universal switching outputs

The push-pull transistor outputs enable the simplest installation. You install the output like an NPN switch and it is an NPN switch; you install the output like a PNP switch and it is a PNP switch – without programming or wire breaks.

You are assured a resistance to short circuits and pole reversal and an overload or short circuit is also shown in the display with OMNI electronics.

With some devices, an optional relay output can be selected.

Members of GHM GROUP: GREISINGER I HONSBERG I Martens I IMTRON I Setters I VAL.CO

pi-ho-sm-flow-calorimetry_e V1.00-01

Device overview

During	Damas	Pressure	Medium	0	Disalara	Outpu	t signal	
Device	Range	in bar	temperature	Supply voltage	Displays	Switching	Measuring	Page
EFK2	2300 cm/s	PN 100 (200)	0+70 °C	24 V DC	Signal LED red / green	1 x Push-Pull or Relay	-	6
EFKP EFKM	2300 cm/s	PN 100 (200)	0+70 °C	24 V DC	Signal LED and LED trend display	1 x Push-Pull or Relay	-	8
LABO-F012-S	2300 cm/s	PN 1040	-20+70 °C (100 °C)	24 V DC	Signal LED	1 x Push-Pull	-	10
LABO-F012-I	2300 cm/s	PN 1040	-20+70 °C (100 °C)	24 V DC	Signal LED	-	420 mA	13
LABO-F012-U	2300 cm/s	PN 1040	-20+70 °C (100 °C)	24 V DC	Signal LED	-	010 V	13
LABO-F012-F	2300 cm/s	PN 1040	-20+70 °C (100 °C)	24 V DC	Signal LED	-	Programmable F / F Transducer 02 kHz Push-pull	13
LABO-F012-C	2300 cm/s	PN 1040	-20+70 °C (100 °C)	24 V DC	Signal LED	-	1 pulse per defined quantity Push-Pul	13
FLEX-F	2300 cm/s + -20+100 °C	PN 100 (200)	0+70 °C (100 °C)	24 V DC	Signal LED	1 x Push-Pull	0/420 mA or 010 V or Frequency 02 kHz	16
FLEX-FIN	0,0012 l/min, 0,0255 l/min or 0,0510l/min	PN 10	0+70 °C (-20+100 °C)	24 V DC	Signal LED	1 x Push-Pull	420 mA 020 mA or 010 V	21
OMNI-F	2300 cm/s	PN 100 (200)	0+70 °C	24 V DC	Graphics LCD illuminated transflective and signal LED	2 x Push-Pull	420 mA 020 mA or 010 V	25
OMNI-FIN	0,0012 l/min or 0,0255 l/min or 0,0510 l/min	PN 10	0+100 °C (130 °C)	24 V DC	Graphics LCD illuminated transflective and signal LED	2 x Push-Pull	420 mA 020 mA or 010 V	29

Members of GHM GROUP: GREISINGER I HONSBERG I Martens I IMTRON I Seltacet I VAL.CO

Device overview

Davias	Damas	Pressure Medi	Medium	0	D : 1	Output signal		Dama
Device	Kange	in bar	temperature	Supply voltage	Displays	Switching	Measuring	Page
ECI-3	All LABO, FLEX,	and OMNI parame	eters can be set o	or modified using t	he ECI-3 configur	ator.		33
OMNI-C Counter	Simple filling counter with programmable end signal Counter for flow transmitters: Piston, Dynamic diaphragm, Rotor, Turbine, Gear, Screw, Calorimetry, MID, Vortex							
OMNI-C1 Counter	Momentary value indicator, transmitter and meter OMNI-C1 electronics Counter for flow transmitters: Piston, Dynamic diaphragm, Rotor, Turbine, Gear, Screw, Calorimetry, MID, Vortex							39
Options	 LABO transmitter – Temperature up to 150 °C OMNI – Tropical model 						49 49	
Accessories	 Type ZV / ZE (Filter) TS1(T-piece TS) SL1(Welded / soldered nozzles) ADQ-012G0151. / ADQ-012M020AP1 (Crimp connection) ADG-015GS026K (Weld-on adapter) ADM-020F054P2 (Flange) KB(Round plug connector 4/5-pin) OMNI-TA (Panel meter) OMNI-remote 					42 43 45 45 46 46 47 47 49		

Errors and technical modifications reserved.

Flow Switch EFK2

- Very small installation width, therefore very narrow . pipework is possible
- Mo moving parts in the medium being monitored
- Installation largely independent of nominal width

Characteristics

The EFK2 flow switch controls the flow speed of fluid media. Its compact form combines the built-in sensor, a two-colour LED status display, and a switching point which can be set using a potentiometer; it has push-pull or relay output. A flexible gooseneck can be installed between the sensor and the electronics housing, so that the best possible view of the flow switch display is provided even in awkward installation locations.

Technical data

Sensor	calorimetric measurement principle
Process	screw-in thread G ¹ / ₄ AG ¹ / ₂ A,
connection	push-in sensor Ø12 mm
Metering range	water 2150 cm/s or 3300 cm/s
	oil available on request
Measurement	±10 % of full scale value
accuracy	
Dynamics	13 seconds in water
Pressure	PN 100 bar optionally PN 200 bar
resistance	
Media	070 °C
temperature	
Ambient	-20+70 °C
temperature	
Temperature	4 K/s
gradient	
Supply voltage	24 V DC / AC ±10 %
Current	max. 70 mA
consumption	
Switching output	galvanically separated relay contact or
	"push-pull" transistor output (resistant to
	short circuits and reversal polarity protected)
Output loading	2 A / 30 V DC/AC max. for relay,
D : 1	100 mA / 24 V max. for transistor output
Display	red / green LED
A .11	(red < limit value, green > limit value)
Adjustment	as input
Flootricol	for round plug connector M12v1 4 polo
connection	for round plug connector MT2x1, 4-pole
Posistant to short	1/00
circuits	yes
Poversal polarity	1/05
protected	yes
Ingress protection	IP 65
ingress protection	11 00

Materials medium-contact	1.4571
Materials, non- medium-contact	1.4305
Weight	approx. 0.3 kg
Conformity	CE

Dimensions

Gooseneck option

A gooseneck (optional) between the electronics head and the primary sensor provides complete freedom in the orientation and reading direction of the sensor.

Wiring

Relay contact

NC

The switching outputs are self-configuring, depending on whether they are connected as PNP or NPN switches.

Handling and operation

Installation

Installation must be such that the flow impinges on the marking (X) on the sensor. For sensors with screw-in threads, PTFE tape or sealing paste can be used for the seal. The installation location should be selected so that reproducible flow conditions are achieved (sufficient run-in length, wherever possible no valves, kinks, bends, etc directly ahead of the sensor. A sieve just upstream of the sensor may have a beneficial effect on reproducibility.

Operation

The flow is raised to the limit value, and the switching point is determined by turning the potentiometer to the point where the LED just switches from red to green (teaching).

LED red: Flow rate < Limit value

LED green: Flow rate > Limit value

Ordering code

O=Option

1.	Connection	size						
	008	connection G ¹ / ₄ A						
	015	connection G ¹ / ₂ A						
	013	system fastener Ø1	3.2					
	012	push-in sensor Ø12	sh-in sensor Ø12					
2.	Process cor	nnection						
	Н	male thread				•	•	
	т	for insertion into the T-piece	e system		•			
	V	push-in sensor with insertion depth	variable	•				
3.	Connection	material	naterial					
	К	stainless steel 1.45	stainless steel 1.4571				•	
4.	Sensor							
	028		28.0 mm				•	
	029	sensor length	29.6 mm			•		
	045 O		45.0 mm			•		
	031	sensor for T-niece	G ³ / ₈ G ¹ / ₂		•			
	037	sensor for t-piece	G ³ / ₄ G 2		•			
	050		50 mm	٠				
	070		70 mm	٠				
	100	insertion sensor	100 mm	٠				
	150		150 mm	٠				
	200		200 mm	٠				
5.	Switching o	utput						
	0	relay contact NO (n open when there is	ormally open / no flow)					
	С	relay contact NC (no closed when there i	relay contact NC (normally closed / closed when there is no flow)					
	Т	push-pull output	,					
6.	Electrical co	onnection						
	S	for round plug conn	ector M12x1, 4-p	ole				
7.	Optional							
	Н О	model with goosene	eck					

Accessories

- Cable/round plug connector (KB...) see additional information "Accessories"
- made-up cable
- T-pieces for system connection Ø13.2
- Weld-on adapter for insertion sensor Ø12
- Compression fitting for insertion sensor Ø12 Flange for insertion sensor Ø12

....

Flow and temperature switch EFKP / EFKM

- Flow and temperature monitoring
- No moving parts in the medium being monitored
- Installation largely independent of nominal width

Characteristics

The flow switch EFKP / EFKM monitors the flow rate and optionally the temperature of fluid media. Its compact form combines the builtin sensor, an LED trend display (for FLOW) with two-colour status display, and a switching point which can be set using a potentiometer; it has PNP or NPN output. A temperature limit can also optionally be set and monitored using a PNP or NPN output. In addition, a flexible gooseneck can be installed between the sensor and the electronics housing, so that the best possible angle of view of the flow switch display is provided even in awkward installation locations.

Technical data

Sensor	calorimetric measurement principle
Process	screw-in thread G ¹ / ₄ AG ¹ / ₂ A,
connection	push-in sensor Ø12 mm
Metering range	water 2150 cm/s or 3300 cm/s
	oil available on request
Pressure	PN 100 bar optionally PN 200 bar
resistance	
Medium	0+70 °C
temperature	
Ambient	-20+70 °C
temperature	
Storage	-20+80 °C
temperature	
Temperature	4 K/s
gradient	
Display	9 LEDs (red = limit value,
	green 1-8 = flow rate minmax.)
Adjustment	as input
potentiometer	
Supply voltage	24 V DC ±10 %
Current	80 mA
consumption	
Output	PNP or NPN (Relais on request)

Output loading	200 mA max.
Electrical	for round plug connector M12x1, 4-pole
connection	
short circuit proof	yes
Reverse polarity	yes
protected	
Ingress protection	IP 60 plastic head
	IP 67 metal head
Materials	1.4571
medium-contact	
Materials, non-	CW614N plated
medium-contact	PA6.6 (only EFKP)
Weight	0.35 kg (EFKP-015HK028PS)
_	0.60 kg (EFKM-015HK028PS)
Conformity	CE

Wiring

Members of GHM GROUP: GREISINGER I HONSBERG I Martens I IMTRON I Seltaceria I VAL.CO

Dimensions

Gooseneck option

A gooseneck (optional) between the electronics head and the primary sensor provides complete freedom in the orientation and reading direction of the sensor.

Handling and operation

Installation

Installation must be such that the flow impinges on the marking (X) on the sensor. For sensors with screw-in threads, PTFE tape or sealing paste can be used for the seal. The installation location should be selected so that reproducible flow conditions are achieved (sufficient run-in length, wherever possible no valves, kinks, bends, etc directly ahead of the sensor). A sieve just upstream of the sensor may have a beneficial effect on reproducibility.

Benefits of EFKM:

- robust metal housing
- Ingress protection IP 67
 transparent mineral glass cover
- Optionally, opaque metal cover
- optionally, opaque metal e

Ordering code

O=Option

1.	Function							
	Р	plastic head / flow					_	
	PT	plastic head / flow and	astic head / flow and temperature					
	М	metal head / flow						
	MT	metal head / flow and to	emperature					
2.	Connection	on size						
	008	DN 8 - G ¹ / ₄ A						
	015	DN 15 - G ¹ / ₂ A						
	013	system fastener Ø13.2						
	012	push-in sensor Ø12						
3.	Process of	connection						
	Н	male thread	ale thread				٠	
	Т	for insertion into the sys	stem T-piece		٠			
	V	push-in sensor with var	ush-in sensor with variable					
		isertion depth						
4.	Connectio	n material						
_	ĸ	stainless steel 1.4571				•	-	
5.	Sensor le	ngth	ngth				_	
	028		28.0 mm		_		•	
	029	sensor length	29.6 mm		_	•		
	045 O		45.0 mm		_	•		
	031	sensor for T-piece	G ³ / ₈ G ¹ / ₂		•			
	037		G %4G 2	-	•		_	
	050		50 mm	•	_			
	070		70 mm	•	_			
	100	insertion sensor	100 mm	•	_			
	150		150 mm	•	_			
_	200		200 mm	•				
6.	Switching						_	
		Push Pull (PNP/NPN)	• • • • • • • • • • • • • • • • • • • •					
7	K U	Relay (N.O., Delow IIM	i = open contact)					
1.			N10x1 1 pala				_	
0	0 Ontional	for round plug connecto	DI MITZXT, 4-POIE					
0.		model with appended					_	
	пО	model with gooseneck						

Accessories

- Cable/round plug connector (KB...) see additional information "Accessories"
- T-pieces for system connection Ø13.2
- Weld-on adapter for insertion sensor Ø12
- Compression fitting for insertion sensor Ø12
- Flange for insertion sensor Ø12

Members of GHM GROUP: GREISINGER I HONSBERG I Martens I IMTRON I Setto I VAL.CO

Flow Switch LABO-F012-S

- Complete flow switch in 12 mm housing
- Can be used for various tubing cross-sections
- Configurable switching point via plug pin (teaching)
- Simple to use
- Same form available for flow transmitter, temperature switch / transmitter or level switch

Characteristics

The sensors of the LABO-F012 family are used for monitoring non-viscous fluids (for oil or gases on request). They come complete with electronics, and are supplied installed inside a compact sensor housing of 12 mm diameter and with M12x1 round plug outlet. The 16-bit processor carries out temperature compensation and linearisation of the calorimetric signal (measurement of the heat removal at the sensor tip by the flowing medium; for this see also the general description for calorimetry).

The electronics of the LABO-F012-S are a flexibly configurable limit switch.

The switching value can be set by the user via teaching (see Handling and Operation). All other values have been preset at the factory, but can be modified by the user with the aid of the optionally available ECI-1 interface and a PC.

The adjustable parameters are:

- Switching value
- Hysteresis
- Minimum/maximum monitoring
- Switching delay
- Switchback delay
- Power-On delay
- Teach-offset

Technical data						
Sensor	calorimetric I	measurement principle				
Process connection	push-in sens	push-in sensor Ø12 mm				
Switching range	water 2150 cm/s or 3300 cm/s oil or gases available on request					
Measurement accuracy	dependent on the installation location and flow conditions typically ± 10 % of full scale value or 2 cm/s, of full scale value measured in the T-piece ± 5 %					
Repeatability	±1 %					
Start-up time	10 sec. after voltage	application of the operating				
Response time	13 s					
Pressure resistance	Stainless steel compression PN 40 bar fitting					
Modium						
temperature	-20+70 °C -20+100 °C (extended temperature range)					
Ambient temperature	0+60 °C	· · · ·				
Temperature dependency	± 0.01 % / 1	К				
Temperature gradient	4 K/s					
Materials medium-contact	Housing	1.4571				
Materials non- medium-contact	Plug	PA6.6 gold-plated contacts				
Supply voltage	24 V DC ±10	0 % (controlled)				
Power consumption	< 2 W					
LED	yellow LED (On = Norma rapid flashing	al / Off = Alarm / g = Programming)				
Electrical connection	for round plu	ig connector M12x1, 4-pole				
Ingress protection	IP 67					
Weight	approx. 0.05 (excluding so	kg crewed connection)				
Conformity	CE					

Wiring

Connection example: PNP NPN

The use of shielded cabling is recommended.

Members of GHM GROUP: GREISINGER | HONSBERG | Martens | IMTRON | Seltaces | VAL.CO

pi-ho-sm-flow-calorimetry_e V1.00-01

Dimensions

Optional accessories

Handling and operation

Installation

There are various installation options available:

The stainless steel compression fitting is screwed into a $G^{1/2}$ threaded drilling. For this, a G $\frac{1}{2}$ welded-on nozzle is also available. When a suitable seal is used, this arrangement can take pressures up to 10 bar. The stainless steel threaded connection is first tightened by hand, and then by $\frac{1}{4}$ of a turn, using a spanner. The connection ring of the threaded connection can then no longer be removed from the sensor, and the immersion depth can therefore not be changed further.

The plastic cone is fitted to the separately available welded-on nozzle intended for this purpose, or to a suitable T-piece, using the union nut provided (available in brass or stainless steel). The union nut must be tightened to a torque of 20 Nm. It is possible to loosen the connection again, and so the immersion depth can be changed. This arrangement is suitable for pressures up to 10 bar.

When installing, it should also be noted that the sensors are directional (comply with the marking on the housing). The reduction of the sensor must be at 1/3..1/2 depth of the pipe diameter.

Avoid bubbles or deposits on the sensor. It is therefore best to install at the side

Flow

Operation and programming

The switching value can be set by the user by means of teaching. For this, proceed as follows:

- The flow which is to be set is applied to the device.
- Apply an impulse of at least 0.5 seconds and max. 2 seconds duration to pin 2 (e.g. via a bridge to the supply voltage or a pulse from the PLC), in order to accept the measured value.
- When the teaching is complete, pin 2 should be connected to 0 V, so as to prevent unintended programming.

The device has a yellow LED which flashes during the programming pulse. During operation, the LED serves as a status display for the switching output.

To avoid the need to transit to an undesired operating status for the purpose of teaching, the device can be provided ex-works with a teach-offset. The teach-offset point is added to the currently measured value before saving.

Example: The switching value is to be set to 80 cm/s, because at this flow rate a critical process status is to be notified. However, only 60 cm/s can be achieved without danger. In this case, the device would be ordered with a teach-offset of +20 cm/s. At 60 cm in the process, a switching value of 80 cm would then be stored during "teaching".

The LABO-F012-S limit switch can be used to monitor minimal or maximal

With a minimum-switch, falling below the limit value causes a switchover to the alarm state. Return to the normal state occurs when the limit value plus the set hysteresis is once more exceeded.

With a maximum-switch, exceeding the limit value causes a switchover to the alarm state. Return to the normal state occurs when the measured value once more falls below the limit value minus the set hysteresis

pi-ho-sm-flow-calorimetry_e V1.00-01

A changeover delay time $(t_{\mbox{\tiny DS}})$ can be applied to switching to the alarm state. Equally, one switch-back delay time (t_{DR}) of several can be applied to switching back to the normal state.

In the normal state the integrated LED is on, in the alarm state it is off, and this corresponds to its status when there is no supply voltage.

In the non-inverted (standard) model, while in the normal state the switching output is at the level of the supply voltage; in the alarm state it is at 0 V, so that a wire break would also display as an alarm state at the signal receiver. Optionally, an inverted switching output can also be provided, i.e. in the normal state the output is at 0 V, and in the alarm state it is at the level of the supply voltage.

A Power-On delay function (ordered as a separate option) makes it possible to maintain the switching output in the normal state for a defined period after application of the supply voltage.

Ordering code

	1.	2.	3.	4.	5.	6
LABO-F012 -	S		Κ			

O=Option

1.	Switching output (Limit switch)						
	S	push-pull (compatible with PNP and NPN)					
2.	Sensor len	gth L					
	100	123 mm					
	150	173 mm					
	200	223 mm					
3.	Sensor ma	terial					
	К	stainless steel 1.4571					
4.	Programmi	ng					
	N	cannot be programmed (no teaching)					
	P C	programmable (teaching possible)					
5.	Switching f	unction					
	L	minimum switch					
	Н	maximum switch					
6.	Switching	signal					
	0	standard					
	I C	inverted					
7.	Optional						
	H C	extended temperature range					

Options

Switching delay period (0.099.9 s) (from Normal to Alarm)		•	S
Switch-back delay period (0.099.9 s) (from Alarm to Normal)		•	S
Power-On delay period (099 s) (after connecting the supply, time during which the switching output is not activated)			S
Switching output fixed at			cm/s
Switching hysteresis Standard = 2 % of the metering range			%
Teach-offset (in percent of the metering range) <i>Standard</i> = 0 %			%

Accessories

- Cable/round plug connector (KB...) see additional information "Accessories"
- ECI-1 device configurator (USB programming adapter)
- Weld-on adapter • Compression fitting
- Flange

Flow Transmitter ABO-F012-I / U / F / C

- Complete transmitter in 12 mm housing
- For various nominal tubing widths,
- the same transmitter
- Signal proportional to the flow speed 4..20 mA or 0..10 V or frequency output
- Adjustable working range .
- User-configurable via plug pin (teaching) . Can be used for various tubing cross-sections •
- Very simple to use

Characteristics

The sensors of the LABO-F012 family are used for monitoring non-viscous fluids (for oil or gases on request). They come complete with electronics, and are supplied installed inside a compact sensor housing of 12 mm diameter and with M12x1 round plug outlet. The 16-bit processor carries out temperature compensation and linearisation of the calorimetric signal (measurement of the heat removal at the sensor tip by the flowing medium).

The LABO-F012 electronics transmit the result as:

- Analog 0/4...20 mA signal (LABO-F012-I)
- Analog 0/2..10 V signal (LABO-F012-U) .
- Frequency signal (LABO-F012-F) or .
- Pulse output, pulse / x litres (LABO-F012-C) .

A model with switching output is available under designation LABO-F012-S.

If desired, the range end value can be set to the currently existing flow using "teaching".

If the transmitter is ordered in a specific T-piece, it can also be adjusted in I/min. Here, it should be noted that the flow speed is measured at only one point in the tubing cross-section.

Technical data	
Sensor	calorimetric measurement principle
Process connection	push-in sensor Ø12 mm
Metering range	water 2150 cm/s or 3300 cm/s oil or gases available on request
Measurement accuracy	depending on the installation location and flow conditions typically ± 10 % of full scale value or 2 cm/s, of full scale value measured in the T-piece ± 5 %
Repeatability	±1 %
Pressure resistance	stainless steel compression PN 40 bar fitting
	plastic cone with union nut PN 10 bar
Medium	-20+70 °C $-20+100$ °C (extended temperature range)
Ambient temperature	0+60 °C
Temperature dependency	±0.01 % / K
Supply voltage	24 V DC ±10 % (controlled)
Power consumption	< 2 W
Analog output	420 mA / load max. 500 Ohm or 010 V / min. load 1 kOhm
Frequency output	selectable, max. 2 kHz.
Pulse output	selectable pulse per volume, details of Nominal pipework width required, pulse width 50 ms
LED	yellow LED (On = Normal / Off = Alarm / rapid flashing = Programming)
Electrical connection	for round plug connector M12x1, 4-pole
Ingress protection	IP 67
Materials medium-contact	Housing 1.4571
Materials non- medium-contact	Plug PA6.6 gold-plated contacts
Weight	approx. 0.05 kg (excluding screwed connection)
Conformity	CE

Wirina

Connection example: PNP NPN

The use of shielded cabling is recommended.

Members of the GHM GROUP: GREISINGER | HONSBERG | Martens | IMTRON | Acta CEN

Weld-on adapter

Compression fitting stainless steel

SW22

22AF

SW27

27AF

Handling and operation

Installation

There are various installation options available:

The stainless steel compression fitting is screwed into a G $^{1}/_{2}$ threaded drilling. For this, a G $^{1}/_{2}$ welded-on nozzle is also available. When a suitable seal is used, this arrangement can take pressures up to 10 bar. The stainless steel threaded connection is first tightened by hand, and then by $^{1}/_{4}$ of a turn, using a spanner. The connection ring of the threaded connection can then no longer be removed from the sensor, and the immersion depth can therefore not be changed further!

The plastic cone is fitted to the separately available welded-on nozzle intended for this purpose, or to a suitable T-piece, using the union nut provided (available in brass or stainless steel). The union nut must be tightened to a torque of 20 Nm. It is possible to loosen the connection again, and so the immersion depth can be changed. This arrangement is suitable for pressures up to 10 bar.

When installing, it should also be noted that the sensors are directional (comply with the marking on the housing). The reduction of the sensor must be at $\frac{1}{3}$... $\frac{1}{2}$ depth of the pipe diameter.

Marking X Flow

Programming

If desired, the metering range endpoint can be set by the user by means of teaching.

- For this, proceed as follows: • Apply the flow rate end range
- Apply the flow rate end range to the device
 Apply an impulse of at least 0.5 seconds and max. 2 seconds duration to pin 2 (e.g. via a bridge to the supply voltage or a
- pulse from the PLC), in order to accept the measured value.When the teaching is complete, pin 2 should be connected to
- 0 V, so as to prevent unintended programming.

The devices have a yellow LED which flashes during the programming pulse. During operation, the LED acts as a display for the operating voltage.

Note: Requirement for programmability must be stated when ordering, otherwise the device cannot be programmed. See also programming options by PC for all parameters and for adjustment (accessory).

Ordering code

O=Option

1.	Electrical o	utput
	I	current output 420 mA
	U	voltage output 010 V
	F	frequency output
	С	pulse output (x litre/ pulse relative to nominal pipework width, see "Option")
2.	Sensor leng	յth L
	100	123 mm
	150	173 mm
	200	223 mm
3.	Sensor mat	erial
	К	stainless steel 1.4571
4.	Programmi	ng
	Ν	cannot be programmed (no teaching)
	P O	programmable (teaching possible)
5.	Optional	
	H O	extended temperature range

Avoid bubbles or deposits on the sensor. It is therefore best to install at the side.

Required ordering information		Accessories
For LABO-F012-F: Output frequency at full scale Maximum value: 2,000 Hz	Hz	 Cable/round plug connector (KB) see additional information "Accessories" Device configurator ECI-1 Weld-on adapter
For LABO-F012-C: For LABO-F012-C, the volume must be stavalue and unit) which will correspond to one adjustment depends on the inner diameter of t is supplied only with a T-piece (which must be a	ated (with numerical pulse. Because the he piping, this model ordered separately).	 Compression fitting flange External display OMNI-TA or OMNI Remote
Volume per pulse (numerical value)		
Volume per pulse (unit)		
Options		
Special range for analog output: <= Metering range (Standard=Metering range)	cm/s	
Special range for frequency output: <= Metering range (Standard=Metering range)	cm/s	
Power-On delay period (099 s) (time after applying power during which the outputs are not activated or set to defined values)	S	
Further options available on request		

Members of the GHM GROUP: GREISINGER | HONSBERG | Martens | IMTRON | Meltacizim

pi-ho_ska-flabootalozimetrye_e/V.0.0@201

135

Flow Transmitter / Switch FLEX-F

- Compact robust flow switch / transmitter •
- Combination with temperature switch or transmitter possible
- . Mo moving parts in the medium being monitored
- Only one medium-contact material .
- Simple to use
- Very low pressure loss
- Various sensor lengths and models •
- Short response times for a calorimetric sensor •
- Cable outlet infinitely rotatable
- Small installation width, therefore very narrow pipework

Characteristics

The FLEX-F flow sensor monitors fluid media. Its compact form combines the built-in sensor and converter / counter which, depending on the model, trigger a limit value output (push-pull, compatible with PNP and NPN) or an analog output (4..20 mA or 0..10 V) or both. The limit switch can optionally also be operated as frequency output. .

The converter / counter record two process parameters: the flow speed of the medium and its temperature. Both parameters can be assigned to the analog output or to the switching output. The following output combinations are available:

Flow		Temperature	
Analog output	Switching output	Analog output	Switching output
•			
	•		
•	•		
•			•
	•	•	

The switching output can be ordered as a minimum or a maximum switch.

Technical data			
Sensor	calorimetric mea	asurement principle	
Process connection	screw-in thread G ¹ / ₄ AG ¹ / ₂ A, Push-in sensor Ø12 mm		
Metering range	water 2150 cm/s		
	or 3300 cm/s		
Maaau	oil available on request		
accuracy	flow conditions	ne installation location and	
,	typically ± 10 % of full scale value or 2 cm/s,		
	measured in the	e T-piece ±5 % of full scale	
Reneatability	+1 %		
Operating	PN 100 bar, 200) bar available on request	
pressure			
Metering range	0+70 °C (high	temperature model	
Temperature	0+120 °C with	gooseneck)	
Operating temperature	0+70 °C		
Storage temperature	-20+80 °C		
Temperature gradient	4 Kelvin/s		
Materials medium-contact	Sensor	1.4571	
Materials, non-	Housing	1.4305	
medium-contact	Plug	PA6.6	
	Clip	PA6.6	
Adjustment	by means of ma	ignet	
Supply voltage	24 V DC ±10 %		
Current	max. 100 mA		
Switching output	transistor output	t "nuch-null"	
ownering output	(resistant to sho	ort circuits and polarity	
	reversal)		
Qualitation	$I_{out} = 100 \text{ mA ma}$	ax.	
Switching hysteresis	riow 4 % of full s	scale value, temp.: approx. 2	
Display	yellow LED (On rapid flashing =	= Normal / Off = Alarm / Programming)	
Analog output	420 mA / Load 010 V	500 Ohm max. or	
Electrical	for round plug c	onnector M12x1, 4-pole	
Weight	approx. 0.2 kg (standard version)	
Ingress protection	IP 67		
Conformity	CE		

Product information Flow - Calorimetry

Signal output curves

Current output

Voltage output

Frequency output

 f_{max} selectable in the range of up to 2000 Hz

Other characters on request.

Wiring

Connection example: PNP NPN

Dimensions

Members of GHM GROUP: GREISINGER I HONSBERG I Martens I IMTRON I Selto I VAL.CO

Gooseneck option

A gooseneck (optional) between the electronics head and the primary sensor provides complete freedom in the orientation and reading direction of the sensor.

Handling and operation

Installation

Before the electrical installation, it must be ensured that the supply voltage corresponds with the data sheet.

In order to ensure the sensor's maximum insensitivity to interference, the flow should run from bottom to top (best degassing even at the slowest flow speed).

Screw-in sensors are to be sealed using Teflon tape, so that the inwards flow is directed to the incised cross. This is the position at which measurement is undertaken in the factory, and which guarantees the best results. The sensor must be screwed in using its hexagonal spanner only.

There are various options for installing the 12 mm push-in sensors (OMNI-F012):

The stainless steel crimp screw jointis screwed into a G $^{1}/_{2}$ threaded drilling. For this, a G $^{1}/_{2}$ welded-on nozzle is also available. When a suitable seal is used, this arrangement can take pressures up to 40 bar. The stainless steel threaded connection is first tightened by hand, and then by $^{1}/_{4}$ of a turn, using a spanner. The connection ring of the threaded connection can then no longer be removed from the sensor, and the immersion depth can therefore not be changed further.

The plastic cone is fitted to the separately available welded-on nozzle intended for this purpose, or to a suitable T-piece, using the union nut provided (available in brass or stainless steel). The union nut must be tightened to a torque of 20 Nm. It is possible to loosen the connection again, and so the immersion depth can be changed. This arrangement is suitable for pressures up to 10 bar.

When installing the push-in sensors, it should also be noted that the sensors are directional (comply with the marking on the housing).

For all types of installation, the reduction of the sensor tip must lie completely in the open flow cross-section, wherever possible at a depth of $1/_{3..}1/_{2}$ of the pipe diameter.

Run-in and run-out sections of 10 x D should be provided.

Programming

The electronics contain a magnetic contact, with the aid of which different parameters can be programmed. Programming takes place when a magnet clip is applied for a period between 0.5 and 2 seconds to the marking located on the label. If the contact time is longer or shorter than this, no programming takes place (protection against external magnetic fields).

After the programming ("teaching"), the clip can either be left on the device, or removed to protect data.

IONSBERG

C Member of GHM GROUP

The device has a yellow LED which flashes during the programming pulse. During operation, the LED serves as a status display for the switching output.

In order to avoid the need to transit to an undesired operating status during "teaching", the device can be provided ex-works with a "teach-offset". The "teach-offset" value is added to the currently measured value before saving (or is subtracted if a negative value is entered).

Example: The switching value is to be set to 70 % of the metering range, because at this flow rate a critical process status is to be notified. However, only 50% can be achieved without danger. In this case, the device would be ordered with a "teach-offset" of +20 %. At 50 % in the process, a switching value of 70 % would then be stored during "teaching".

Normally, programming is used to set the limit switch. However, if desired, other parameters such as the end value of the analog or frequency output may also be set.

The limit switch can be used to monitor minimal or maximal.

With a minimum-switch, falling below the limit value causes a switchover to the alarm state. Return to the normal state occurs when the limit value plus the set hysteresis is again exceeded.

With a maximum-switch, exceeding the limit value causes a switchover to the alarm state. Return to the normal state occurs when the measured value once more falls below the limit value minus the set hysteresis.

A switchover delay time (t_{DS}) can be applied to the switchover to the alarm state. Equally, one switch-back delay time (t_{DR}) of several can be applied to switching back to the normal state.

In the normal state the integrated LED is on, in the alarm state it is off, and this corresponds to its status when there is no supply voltage.

In the non-inverted (standard) model, while in the normal state the switching output is at the level of the supply voltage; in the alarm state it is at 0 V, so that a wire break would also display as an alarm state at the signal receiver. Optionally, an inverted switching output can also be provided, i.e. in the normal state the output is at 0 V, and in the alarm state it is at the level of the supply voltage.

A Power-On delay function (ordered as a separate option) makes it possible to maintain the switching output in the normal state for a defined period after application of the supply voltage.

Ordering code

O=Option

Connection size			
connection G ¹ / ₄ A			
connection G ¹ / ₂ A			
system fastener Ø13.2			
push-in sensor Ø12			
••			
•			
•			
• • • •			
•			
•			
•			
•			
•			
•			
•			
•			
•			
•			
Analog output			
Voltage output 010 V			
without analog output			
Unit for analog output			
flow rate to analog output			
tor)			
Switching output level			
O standard output			

Members of GHM GROUP: GREISINGER I HONSBERG I Martens I IMTRON I Setto I VAL.CO

Options

Special measuring range for flow: Max. 300 cm/s (standard = 150 cm/s)	cm/s
Special measuring range for temperature: Maximum 120 °C (standard = 70 °C)	°C
Minimum -20 °C (standard = 0 °C)	°C
Special range for analog output: <= Metering range (standard = metering range)	cm/s °C
Special range for frequency output: <= Metering range (Standard = Metering range)	cm/s °C
End frequency (max. 2000 Hz)	Hz
Switching delay (from Normal to Alarm)	. S
Switchback delay (from Alarm to Normal)	. S
Power-On delay (099 s) (time after power on, during which the outputs are not actuated)	S
Switching output fixed	cm/s
Special hysteresis (standard = 4 % EW)	%
Gooseneck	

at operating temperatures above 70 °C)

If the field is not completed, the standard setting is selected automatically.

Accessories

- Device configurator ECI-1 T-pieces for system connection Ø13.2 Weld-on adapter for insertion sensor Ø12
- Compression fitting for insertion sensor Ø12
- Flange for insertion sensor Ø12
- Cable/round plug connector (KB...) see additional information "Accessories"

Flow Transmitter / Switch FLEX-FIN

- Flow switch / transmitter for small flows
- Combination with temperature switch or transmitter possible
- No moving parts in the medium being measured
- Only one medium-contact material
- Simple to use
- Low pressure loss
- Various nominal widths
- Short response times for a calorimetric sensor
- Linearised and temperature compensated
- Simultaneous measurement of flow and temperature is possible

Characteristics

The FLEX-FIN flow sensor monitors fluid media. Its compact form combines the measurement tube and converter / counter which, depending on the model, trigger an adjustable limit value with transistor output or an analog output (4..20 mA or 0..10 V) or both. In addition, the limit switch can alternatively be replaced by a frequency output or a Pulse output.

The converter / counter record two process parameters: the flow speed of the medium and its temperature. Both parameters can be assigned to the analog output or to the switching output.

The following output combinations are available:

Flow		Temperature	
Analog	Switching output	Analog	Switching output
•			
	•		
•	•		
•			•
	•	•	

The switching output is a "push-pull" transistor output and provides PNP and NPN inputs equally. It can be offered as a minimum switch or a maximum switch, or as a frequency output or a Pulse output.

Technical data			
Sensor	calorimetric measurement principle		
Nominal widths	DN 6_10		
Process	smooth tube for crimp connector or hose		
connection	connection		
Metering ranges	6 mm tube: (0.001) 0.012 l/min		
(for water)	8 mm tube: 0.025.5 l/min		
	10 mm tube: 0.0510 l/min		
	Special ranges available on request		
Measurement	±3 % F.S. (H ₂ O dist.)		
accuracy			
Repeatability	±1 % of the measured value (H ₂ O dist.)		
Temperature gradient	4 K/s		
Pressure	PN 10 bar		
resistance			
Medium	0+70 °C (-20+100 °C available on re-		
temperature	quest)		
Operating	-20+70 °C (electronics)		
temperature			
Storage	-20+80 °C		
temperature Brossume less	may 0.2 has at may flaw		
Pressure loss	max. U.3 bar at max. flow		
Supply voltage	24 V DC ±10 %		
Current	max. 100 mA		
Consumption	Anomaliaton autout llaush mulli		
Switching output	ransistor output push-pull		
	reversal)		
	$I_{out} = 100$ mA max.		
Switching	flow 1 % of full scale value		
hysteresis	Temperature: approx. 1 °C		
Pulse output	pulse width 50 ms		
	\rightarrow max. output frequency < 20 Hz		
Display (only with	yellow LED		
switching output)	(On = Normal / Off = Alarm /		
A allowed and a	rapid flashing = Programming)		
Adjustment	by means of magnet		
Analog output	420 mA / Load 500 Ohm max.		
Analog output	420 mA / Load 500 Ohm max. or 010 V / Load min. 1 kOhm		
Analog output	420 mA / Load 500 Ohm max. or 010 V / Load min. 1 kOhm IP 65		
Analog output Ingress protection Electrical connection	420 mA / Load 500 Ohm max. or 010 V / Load min. 1 kOhm IP 65 for round plug connector M12x1, 4-pole		
Analog output Ingress protection Electrical connection Materials	420 mA / Load 500 Ohm max. or 010 V / Load min. 1 kOhm IP 65 for round plug connector M12x1, 4-pole stainless steel 1.4571		
Analog output Ingress protection Electrical connection Materials medium-contact	420 mA / Load 500 Ohm max. or 010 V / Load min. 1 kOhm IP 65 for round plug connector M12x1, 4-pole stainless steel 1.4571 optional: hastelloy® C-276		
Analog output Ingress protection Electrical connection Materials medium-contact Materials, non-	420 mA / Load 500 Ohm max. or 010 V / Load min. 1 kOhm IP 65 for round plug connector M12x1, 4-pole stainless steel 1.4571 optional: hastelloy® C-276 PPS, PA6.6, CW614N		
Analog output Ingress protection Electrical connection Materials medium-contact Materials, non- medium-contact	420 mA / Load 500 Ohm max. or 010 V / Load min. 1 kOhm IP 65 for round plug connector M12x1, 4-pole stainless steel 1.4571 optional: hastelloy® C-276 PPS, PA6.6, CW614N		
Analog output Ingress protection Electrical connection Materials medium-contact Materials, non- medium-contact Weight	420 mA / Load 500 Ohm max. or 010 V / Load min. 1 kOhm IP 65 for round plug connector M12x1, 4-pole stainless steel 1.4571 optional: hastelloy® C-276 PPS, PA6.6, CW614N approx. 0.2 kg		

Members of GHM GROUP: GREISINGER I HONSBERG I Martens I IMTRON I Setta E IVAL.CO

Product information Flow - Calorimetry

Signal output curves

Current output

Frequency output

f_{max} selectable in the range of up to 2000 Hz

Other characters on request.

Wiring

Connection example: PNP NPN

Before the electrical installation, it must be ensured that the supply voltage corresponds with the data sheet.

It is recommended to use shielded wiring.

Dimensions

A gooseneck (optional) between the electronics head and the primary sensor provides freedom in the orientation of the sensor

Handling and operation

Installation

In order to ensure the sensor's maximum insensitivity to interference, the flow should run from bottom to top (best degassing even at the slowest flow speed). Standard crimp connectors, hoses with crush protection, or the crimp connectors provided by HONSBERG can be used for the connection.

The insulation hoses offer the best possible insulation against the surroundings, and must therefore not be removed.

There is a marking on the rear of the housing. The sensor should be fixed there using a sheet metal screw. The penetration depth of the screw must not exceed 5 mm.

The piping must not be bent or deformed.

When testing, use only hoses, because the transmitter can no longer be returned if the connection pieces have been crimped.

Programming

The electronics contain a magnetic contact, with the aid of which different parameters can be programmed. Programming takes place when a magnet clip is applied for a period between 0.5 and 2 seconds to the marking located on the label. If the contact time is longer or shorter than this, no programming takes place (protection against external magnetic fields).

Members of GHM GROUP: GREISINGER | HONSBERG | Martens | IMTRON | / Jelta 🖂 | VAL.CO 22 pi-ho-sm-flow-calorimetry_e V1.00-01

After the programming ("teaching"), the clip can either be left on the device, or removed to protect data.

The device has a yellow LED which flashes during the programming pulse. During operation, the LED serves as a status display for the switching output.

In order to avoid the need to transit to an undesired operating status during "teaching", the device can be provided ex-works with a "teach-offset". The "teach-offset" value is added to the currently measured value before saving (or is subtracted if a negative value is entered).

Example: The switching value is to be set to 70 % of the metering range, because at this flow rate a critical process status is to be notified. However, only 50% can be achieved without danger. In this case, the device would be ordered with a "teach-offset" of +20 %. At 50 % in the process, a switching value of 70 % would then be stored during "teaching".

Normally, programming is used to set the limit switch. However, if desired, other parameters such as the end value of the analog or frequency output may also be set.

The limit switch can be used to monitor minimal or maximal.

With a minimum-switch, falling below the limit value causes a switchover to the alarm state. Return to the normal state occurs when the limit value plus the set hysteresis is again exceeded.

With a maximum-switch, exceeding the limit value causes a switchover to the alarm state. Return to the normal state occurs when the measured value once more falls below the limit value minus the set hysteresis.

A switchover delay time (t_{DS}) can be applied to the switchover to the alarm state. Equally, one switch-back delay time (t_{DR}) of several can be applied to switching back to the normal state.

In the normal state the integrated LED is on, in the alarm state it is off, and this corresponds to its status when there is no supply voltage.

In the non-inverted (standard) model, while in the normal state the switching output is at the level of the supply voltage; in the alarm state it is at 0 V, so that a wire break would also display as an alarm state at the signal receiver. Optionally, an inverted switching output can also be provided, i.e. in the normal state the output is at 0 V, and in the alarm state it is at the level of the supply voltage.

A Power-On delay function (ordered as a separate option) makes it possible to maintain the switching output in the normal state for a defined period after application of the supply voltage. R

Ordering code

FLEX-FIN

O=Option

1. Connection size 006 tube Ø 6 mm in mm / 0.5 mm 008 8 mm wall thickness 010 10 mm 2. **Process connection** R tube **Connection material** 3. stainless steel 1.4571 Κ O hastelloy[®] C-276 н 4. Unit for analog output F flow rate to analog output т temperature to analog output Κ without Analog output 5. Analog output current output 4..20 mA U voltage output 0..10 V without Analog output Κ 6. Switching output switching output push-pull Т switching output NPN (open collector) Μ Κ without Switching output 7. Measurement parameter to switching output F flow to switching output temperature to switching output Т Κ without switching output Function for switching output 8. minimum switch L O maximum switch н R frequency output С Pulse output Κ Without Switching output 9. Switching output level 0 standard output Т inverted output

Required ordering information

For FLEX-FIN-C:

For the pulse output version, the volume (with numerical value and unit) which will correspond to one pulse must be stated.

Volume per pulse (numerical value)

Volume per pulse (unit)

Swite
(from

If the field is not completed, the standard setting is selected automatically.

Accessories

- Crimp connector •
- Connector / made-up cable •
- Device configurator ECI-1 •
- Cable/round plug connector (KB...) see additional information "Accessories"

Options

Special measuring range for flow:		
Metering range start value	,]l/min
Metering range end value	,]l/min
Filter time (standard = 2 s)		s
Possible values: OFF/0.2/0.5/1/2/4/8/16/32 s.		
Special measuring range for temperature:		
Maximum 100 °C (standard = 70 °C)		°C
Minimum -20 °C (standard = 0 °C)]°C
Special range for analog output: <= Metering range (standard = mete- ring range)]cm/s °C
Special range for frequency output: <= Metering range (standard = Metering range)	:]cm/s °C
End frequency (max. 2000 Hz)		Hz
Switching delay (from Normal to Alarm)		s
Switchback delay (from Alarm to Normal)		s
Power-On delay (099 s) (time after power on, during which the outputs are not actuated)		s
Switching output fixed]cm/s
Special hysteresis (standard = 1 % of full scale value)]%
Gooseneck		

Members of GHM GROUP: GREISINGER | HONSBERG | Martens | IMTRON | / Jelta DEIM | VAL.CO

Flow Transmitter / Switch OMNI-F

- Flow indicator for industrial use, without moving parts
- Short response times for a calorimetric sensor
- Medium comes into contact with only one material
- Analog output 4..20 mA or 0..10 V
- Two programmable switches (push-pull)
- Graphical LCD display, backlit (transreflective), can be read in sunlight and in the dark
- Programmable parameters via rotatable, removable ring (programming protection)
- Full metal housing with non-scratch, chemically resistant glass
- Rotatable electronic head for best reading position
- Small, compact construction
- Simple installation

Characteristics

The calorimetric sensor measures the flow speed in aqueous fluids. The display shows the measured value in a range from 0..100 % as a digital value and as a bar graph. The measured value is output as a 0/4..20 mA value. Both the 0/4 mA and the 20 mA value can be programmed via a scaling of the display range, and so the sensor can be adapted to any flow speed lying within the overall range.

Measurement is supported in terms of temperature compensation and signal processing (linearistion, interpolation, amplification) by the use of a microcontroller.

Because a conclusion on the whole cross-section is drawn based on a point measurement in a pipe, the accuracy achievable is not so good as with a flow sensor in a permanently installed tube (OMNI-FIN or FLEX-FIN).

By turning the programming ring to right or left, it is simple to modify the parameters (e.g. switching point, hysteresis...). To protect from unintended programming, it can be removed, turned through 180 °, and replaced, or completely removed, thus acting as a key.

Technical data Sensor calorimetric measurement principle screw-in thread G ¹/₄ A..G ¹/₂ A, Process connection push-in sensor Ø12 mm Metering range water 2..150 cm/s range, 3..300 cm/s available on request oil (available on request) Measurement dependent on the installation location and flow conditions accuracy typically ±10 % of full scale value or 2 cm/s. of full scale value measured in the T-piece ±5 % ±1 % Repeatability Dynamics in water (25 °C) at average flow speed of approx. 1-2 s adjustable, position of hysteresis **Hysteresis** depends on min. or max. switching value Pressure PN 100 bar (PN 200 bar available on resistance request) Medium 0..+70 °C temperature Ambient -20..+70 °C temperature Storage -20..+80 °C temperature Materials stainless steel 1.4571 medium-contact Materials Housing Stainless steel 1.4305 non-medium-Glass Mineral glass, hardened contact Magnet Samarium-Cobalt Ring POM 24 V DC ±10 % Supply voltage Analog output 0/4..20 mA or 0/2..10 V Power < 1 W consumption Switching outputs transistor output "push-pull" S1 and S2 (resistant to short circuits and polarity reversal) I_{out} = 100 mA max. per output Display backlit graphical LCD-Display (transreflective), extended temperature range -20..+70 °C, 32 x 16 pixels, background illumination, displays value and unit, flashing LED signal lamp with simultaneous message on the display.

Electrical	for round plug connector M12x1, 5-pole
connection	
Ingress protection	IP 67
Weight	approx. 0.25 kg
Conformity	CF

Product information Flow - Calorimetry

Signal output curves

Value x = Begin of the specified range = not specified range

Current output

Voltage output

Other characters on request.

Wiring

Connection example: PNP NPN

connector M12x1

Before the electrical installation, it must be ensured that the supply voltage corresponds to the data sheet. The use of shielded cabling is recommended.

Dimensions

100 %

Flow

Gooseneck option

A gooseneck (optional) between the electronics head and the primary sensor provides complete freedom in the orientation and reading direction of the sensor.

Handling and operation

Installation

In order to ensure the sensor's maximum insensitivity to interference, the flow should run from bottom to top (best degassing even at the slowest flow speed).

Screw-in sensors are to be sealed using Teflon tape, so that the inwards flow is directed to the incised cross. This is the position at which measurement is undertaken in the factory, and which guarantees the best results. The sensor must be screwed in using its hexagonal spanner only.

Members of GHM GROUP: GREISINGER | HONSBERG | Martens | IMTRON | / Jelta DEIM | VAL.CO

A gooseneck (optional) between the electronics head and the primary sensor provides freedom in the alignment and reading direction of the sensor. This option simultaneously provides thermal decoupling between the two units

There are various options for installing the 12 mm push-in sensors (OMNI-F012):

The stainless steel compression fittingis screwed into a G 1/2 threaded drilling. For this, a G 1/2 welded-on nozzle is also available. When a suitable seal is used, this arrangement can take pressures up to 40 bar. The stainless steel threaded connection is first tightened by hand, and then by $\frac{1}{4}$ of a turn, using a spanner. The connection ring of the threaded connection can then no longer be removed from the sensor, and the immersion depth can therefore not be changed further.

The plastic cone is fitted to the separately available welded-on nozzle intended for this purpose, or to a suitable T-piece, using the union nut provided (available in brass or stainless steel). The union nut must be tightened to a torque of 20 Nm. It is possible to loosen the connection again, and so the immersion depth can be changed. This arrangement is suitable for pressures up to 10 bar.

When installing the push-in sensors, it should also be noted that the sensors are directional (comply with the marking on the housing).

For all types of installation, the reduction of the sensor tip must lie completely in the open flow cross-section, wherever possible at a depth of 1/3..1/2 of the pipe diameter. Run-in and run-out sections of 10 x D should be provided

After installation, the OMNI head can be aligned in the best reading position, thanks to its rotatability.

Programming

The annular gap of the programming ring can be turned to positions 1 and 2. The following actions are possible:

Set	to	1	=	continue (STEP)
Set	to	2	=	modify (PROG)

Neutral position between 1 and 2

The ring can be removed to act as a key, or turned through 180 ° and replaced to create a programming protector.

Operation is by dialog with the display messages, which makes its use verv simple

Starting from the normal display (currently measured value with unit), if 1 (STEP) is repeatedly selected, then the display shows the following information in this order:

Display of the parameters, using position 1

- Switching value S1 (switching point 1 in the selected unit)
- Switching characteristic of S1
- (MIN = monitoring of minimum value, hysteresis greater than switching value,

- MAX = monitoring of maximum value, hysteresis less than switching value)
- Hysteresis 1 (hysteresis value of S1 in the set unit)
- Switching value S2
- Switching characteristic of S2
- Hysteresis 2
- Code:
- After entering the code 111, further parameters can be defined.
- Filter (settling time of the display and output) Units: e.g. I/min or %
- Output: 0..20 mA or 4..20 mA •
- 0/4 mA (flow rate corresponding to 0/4 mA) •
- 20 mA (flow rate corresponding to 20 mA)

Edit, using position 2

If the currently visible parameter is to be modified:

- Turn the annular gap to position 2, so that a flashing cursor appears which displays the position which can be modified.
- By repeatedly turning to position 2, values are increased; by turning to position 1, the next digit is reached.
- Leave the parameter by turning to position 1 (until the cursor leaves the row); this accepts the modification.
- If there is no action within 30 seconds, the device returns to the normal display range without accepting the modification.

The limit switches S1 and S2 can be used to monitor minimal or maximal

With a minimum-switch, falling below the limit value causes a switchover to the alarm state. Return to the normal state occurs when the limit value plus the set hysteresis is once more exceeded.

With a maximum-switch, exceeding the limit value causes a switchover to the alarm state. Return to the normal state occurs when the measured value once more falls below the limit value minus the set hysteresis

The change to the alarm state is indicated by the integrated red LED and a cleartext in the display.

While in the normal state the switching outputs are at the level of the supply voltage; in the alarm state they are at 0 V, so that a wire break would also display as an alarm state at the signal receiver.

Overload display

Overload of the switching output is detected, indicated on the display ("Check S 1 / S 2"), and the switching output is switched off.

Simulation mode

To simplify commissioning, the sensor supports a simulation mode for the analog output. It is possible to create a programmable value in the range 0..26.0 mA at the output (without modifying the process variable). This allows the wiring run between the sensor and the downstream electronics to be tested during commissioning. This is mode is accessed by means of **Code 311**.

Factory settings

After modifying the configuration parameters, it is possible to reset them to the factory settings at any time using **Code 989**.

Ordering code

	1.	2.	3.	4.	5.	6.	7.
OMNI-F-			К			S	

O=Option

1.	Connection	size				-				
	008	connection G ¹ / ₄ A								
	015	connection G ¹ / ₂ A								
	013	system fastener Ø1	system fastener Ø13.2							
	012	push-in sensor Ø12	ush-in sensor Ø12							
2.	Process con	nnection	nection							
	Н	male thread				•	٠			
	т	for insertion into the T-piece	e system		•					
	V	push-in sensor with insertion depth	variable	•						
3.	Connection	material								
	K	stainless steel 1.45	571	•	•	•	٠			
4.	Sensor									
	028		28.0 mm				٠			
	029	sensor length			•					
	045 O	45.0 mm				•				
	031	sensor for T-niece	G ³ / ₈ G ¹ / ₂		•					
	037	G ³ / ₄ G 2								
	050		L=73	•						
	070	-	L=93							
	100	sensor length L	L=123	•						
	150	-	L=173	•						
	200		L=223	•						
5.	Analogue o	utput								
	1	Current output 0/4 -	– 20 mA							
	U O	Voltage output 0/2 - request)	Voltage output 0/2 – 10 V (available on request)							
6.	Electrical co	onnection								
	S for round plug connector M12x1, 5-pole									
7.	Options 1									
	Н О	model with goosene	eck							

Accessories

- ECI-1 device configurator (USB programming adapter)
- Cable / round plug connector (KB...) see additional information "Accessories"
- T-pieces for system connection Ø13.2
- Weld-on adapter for insertion sensor Ø12
- Compression fitting for insertion sensor Ø12
- Flange for insertion sensor Ø12

Flow Transmitter / Switch OMNI-FIN

- For foodstuffs use
- Analog output 0/4..20 mA or 0/2..10 V
- Two programmable switches (push-pull)
- Graphical LCD display, backlit
- (transreflective), can be read in sunlight and in the dark
 Programmable parameters via rotatable,
- removable ring (programming protection) • Full metal housing with non-scratch, chemically
- resistant glass
- Physical unit in the display (selectable)
- Rotatable electronic head for best reading position
- Connection to USB interface for setting parameters

Characteristics

The OMNI-FIN calorimetric sensor measures small fluid flows, and has been designed specially for use in the foodstuffs industry (for the measurement principle, see also "General description: calorimetric sensors").

The integrated transducer has a backlit graphics LCD display which is very easy to read both in the dark and in bright sunlight. The graphics display allows the presentation of measured values and parameters in a clearly understandable form. The measured values are displayed to 4 places, together with their physical unit, which may also be modified by the user. The electronics have an analog output (4..20 mA or 0..10 V) and two switching outputs, which can be used as limit switches for monitoring minimal or maximal, or as two-point controllers. The switching outputs are designed as pushpull drivers, and can therefore be used both as PNP and NPN outputs. Exceeding limit values is signalled by a red LED which is visible over a long distance, and by a cleartext in the display. The stainless steel case has a hardened non-scratch mineral glass pane. It is operated by a programming ring fitted with a magnet, so there is no need to open the operating controls housing, and its leakproofness is permanently ensured.

By turning the ring to right or left, it is simple to modify the parameters (e.g. switching point, hysteresis...). To protect from unintended programming, it can be removed, turned through 180 $^\circ$ and replaced, or completely removed, thus acting as a key.

OPTION C:

Preset Counter with external reset option, complementary switching outputs and actual value display.

OPTION C1:

Instantaneous value display with analogue output, pulse-volume output and totalizer

Technical data Sensor calorimetric measurement principle Nominal widths DN 6 10 Process smooth tube for crimp connector or hose connection connection Metering ranges 6 mm tube (0.001) 0.01..2 l/min (for water) 8 mm tube 0.025..5 l/min 10 mm tube 0.05..10 l/min Special ranges available on request Measurement ±3 % F.S. (H₂O dist.) accuracy Repeatability ±1 % of the measured value (H₂O dist.) Temperature 4 K/s gradient Start-up time 10 sec. after application of operating voltage in water (25 °C) at average Response time Flow speed of approx. 1-2 sec. Pressure PN 10 bar resistance Media 0..+100 °C temperature Optionally with spacer: 130 °C, 45 minutes max. -20..+70 °C Ambient temperature -20..+80 °C Storage temperature 24 V DC ±10 % Supply voltage Analog output 0/4..20 mA or 0/2..10 V < 1 W Power consumption Switching outputs transistor output "push-pull", compatible with PNP and NPN, (resistant to short circuits, and reversal polarity protected) $I_{out} = 100 \text{ mA max}.$ Hysteresis adjustable, position of the hysteresis depends on minimum or maximum switching value backlit graphical LCD-Display Display (transreflective), extended temperature range -20..+70 °C, 32 x 16 pixels, background illumination, displays value and unit, flashing LED signal lamp with simultaneous message on the display. Ingress protection IP 67 Electrical for round plug connector M12x1, 5-pole connection Materials stainless steel 1.4571 medium-contact optional: hastelloy[®] C-276 stainless steel 1.4305 Non-medium-Housing: contact materials Glass: mineral glass, hardened Magnet: samarium-Cobalt Ring: POM approx. 0.25 kg Weight Conformity CE

Members of GHM GROUP: GREISINGER pi-ho-sm-flow-calorimetry_e V1.00-01 Voltage output

Signal output curves

Current output

Other characters on request.

Wiring

Connection example: PNP NPN

$$\begin{pmatrix}
2 \bullet & \bullet 1 \\
\bullet 5 \\
3 \bullet & \bullet 4
\end{pmatrix}$$

connector M12x1

See separate wiring at C and C1 option in the separate descriptions.

Before the electrical installation, it must be ensured that the supply voltage corresponds to the data sheet.

The use of shielded cabling is recommended.

Dimensions

100 %

Flow

A spacer between the electronics head and the medium-contact measurement tube provides thermal decoupling between the two units. The media temperature may be raised for 45 min. to 130 °C.

Handling and operation

Installation

In order to ensure the sensor's maximum insensitivity to interference, the flow should run from bottom to top (best degassing even at the slowest flow speed). Standard crimp connectors, hoses with crush protection, or the crimp connectors provided by HONSBERG can be used for the connection.

The insulation hoses provide the best possible insulation from the environment, and should therefore not be removed.

It must be ensured that the calming section with the static mixer is not kinked.

Programming

The annular gap of the programming ring can be turned to positions 1 and 2. The following actions are possible:

Set to 1 = continue (STEP) Set to 2 = modify (PROG)

Neutral position between 1 and 2

The ring can be removed to act as a key, or turned through 180 ° and replaced to create a programming protector.

Members of GHM GROUP: GREISINGER | HONSBERG | Martens | IMTRON | / Jelta 🖂 | VAL.CO pi-ho-sm-flow-calorimetry_e V1.00-01

Operation is by dialog with the display messages, which makes its use very simple.

Starting from the normal display (present value and unit), if 1 (STEP) is repeatedly selected, then the display shows the following information in this order:

Display of the parameters, using position 1

- Switching value S1 (switching point 1 in the selected unit)
- Switching characteristic of S1
 - MIN = Monitoring of minimum value
 - MAX = Monitoring of maximum value
- Hysteresis 1 (hysteresis value of S1 in the set unit)
- Switching value S2
- Switching characteristic of S2 .
- Hysteresis 2 • Code
- After entering the code 111, further parameters can be defined: Filter (settling time of the display and output) .
- Physical unit (Units) .
- Output: 0..20 mA or 4..20 mA •
- 0/4 mA (measured value corresponding to 0/4 mA) .
- 20 mA (measured value corresponding to 20 mA)

For models with a voltage output, replace 20 mA accordingly with 10 V.

Edit, using position 2

If the currently visible parameter is to be modified:

- Turn the annular gap to position 2, so that a flashing cursor appears which displays the position which can be modified.
- By repeatedly turning to position 2, values are increased; by turning to position 1, the cursor moves to the next digit.
- Leave the parameter by turning to position 1 (until the cursor leaves the row); this accepts the modification.
- If there is no action within 30 seconds, the device returns to the normal display range without accepting the modification.

The limit switches S1 and S2 can be used to monitor minimal or maximal.

With a minimum-switch, falling below the limit value causes a switchover to the alarm state. Return to the normal state occurs when the limit value plus the set hysteresis is once more exceeded.

With a maximum-switch, exceeding the limit value causes a switchover to the alarm state. Return to the normal state occurs when the measured value once more falls below the limit value minus the set hysteresis.

The change to the alarm state is indicated by the integrated red LED and a cleartext in the display.

While in the normal state the switching outputs are at the level of the supply voltage; in the alarm state they are at 0 V, so that a wire break would also display an alarm state at the signal receiver.

Overload display

Overload of a switching output is detected and indicated on the display ("Check S 1 / S 2"), and the switching output is switched off.

Simulation mode

To simplify commissioning, the sensor provides a simulation mode for the analog output. It is possible to create a programmable value in the range 0..26.0 mA at the output (without modifying the process variable). This allows the wiring run between the sensor and the downstream electronics to be tested during commissioning. This mode is accessed by means of code 311.

Factory settings

C1

After modifying the configuration parameters, it is possible to reset them to the factory settings at any time using code 989

Members of GHM GROUP: GREISINGER | HONSBERG | Martens | IMTRON | Setto III | VAL.CO

O Counter C1

Options

Counter C (hardware and software option): Preset Counter with external reset option, complementary switching outputs and actual value display (modified wiring diagram!)

Counter C1 (software option): Instantaneous value display with analogue output, pulse-volume output and totalizer

Accessories

- ECI-1 device configurator (USB programming adapter)
- Process adapter
- Cable/round plug connector (KB...) see additional information "Accessories"

Members of GHM GROUP: GREISINGER I HONSBERG I Martens I IMTRON I Settorer I VAL.CO

Configuration Interface ECI-3

- Can be used on site for:
 - parameter modification
 - firmware update
- adjustment of inputs and outputs
- Can be connected via USB

Characteristics

The ECI-3 configuration interface enables connection of GHM HONSBERG sensors to the USB port of a computer. All sensors of the OMNI, FLEX, and LABO families, as well as other sensors which contain a microcontroller are supported.

Both 2-wire and 3-wire sensors are supported.

In combination with the 'HI-Tools' Windows software, it enables

- the modification of all the sensor's configuration settings
- the reading of measured values •
- the adjustment of inputs and outputs
- . firmware updates

Technical data

Auxiliary voltage	Supply of the interface via USB
	3-wire sensors also require a supply according to the sensor specifications in the range of $10 - 30 \text{ V}$ (Observe the sensor data sheet!)
Connections	
Sensor	Device socket M12x1, 5-pin
Supply	Device connector M12x1, 5pole
USB	USB jack type B
Operating tempera- ture	0+50 °C
Storage temperature	-20+80 °C
Dimensions	109 mm (W) x 67.5 mm (D) x 34 mm (H)
Housing material	Aluminium
Ingress protection	IP 40
Weight	0.16 kg (interface without accessories) 1.02 kg (case, incl. contents)
Conformity	CE

Handling and operation

Operating and display elements

Front:

LED	Meaning				
USB	Illuminates with established USB connection				
COMM	Blinks during USB communication				
SUPPLY	Indicates that the supply voltage is present at the sensor connection				
BYPASS	Illuminates when there is no communication, pins of sensor and supply connection are connected to each other				
3-WIRE (A)	MODE LEDs indicate the current operating mode of				
3-WIRE (B)	the interface. This depends on the connected				
2-WIRE	sensor and is automatically adjusted by the software.				

Rear side:

SENSOR	M12x1 socket, 5-pin for sensor connection
SUPPLY	M12x1 plug connector, 5-pin for supply line connection (only for 3-wire sensors) Pin 1 = $+V$ Pin 3 = 0 V The assignment of the remaining pins depends on
	the connected sensor
USB	USB B-socket for connection to the USB port of the computer

Commissioning

The configuration interface is intended for temporary connection to the application. Permanent installation in the system is not intended.

The interface is initially connected to the USB port of the computer using the supplied USB cable. The power supply of the interface takes place via the USB port. Additional auxiliary voltage is not necessary at first. The drivers required for operation are provided on the supplied USB stick and are installed in the usual manner.

Connection of the sensors takes place at the 'Sensor' port with the supplied M12x1 extension cable. The supplied adapter can be used for connection of sensors with a valve connector.

No additional connections are necessary for operation with 2-wire sensors. The supply of sensors and interface takes place from the LISR nor

Members of GHM GROUP:	GREISINGER	Т	HONSBERG	Martens	Т	IMTRON	I.	<i>lia</i> ohm	Т	VAL.CO
pi-ho-sm-flow-calorin	netry_e V1.00-01									33

An amperemeter can be connected to Pin 1 and 2 of the SENSOR socket to measure the loop current. If the BYPASS LED on the front illuminates, the current can be read here. It must be ensured that the voltage drop-off at the amperemeter is not higher than 0.5 V, which means the internal resistance of the measuring device may not be higher than 25 Ohm. Modern multimeters with a digital display normally satisfy this requirement. No damage can occur with high voltages within the supply voltage area, but the display of the loop current becomes faulty.

With 3-wire sensors the supply voltage of the sensor must be connected to the 'Supply' connection. For this purpose, the available supply line of the sensor or an optionally available power supply plug can be used. The supply voltage must match the specifications of the connected sensor. If the supply line has a 4-pin M12x1 round plug connector without middle hole, the supplied adapter K04-05 must be used; otherwise connection with the 5-pin plug of the interface is not possible. 4-pole leads with a middle hole can be used without an adapter.

In the inactive state (without communication), the interface behaves entirely neutral (BYPASS LED on the front illuminates). All signals of the sensor are still available to the application. During communication between computer and sensor, the signal lines are separated in the interface, so that in this state the sensor's output signals are not available.

Operation of the interface takes place using the HI-Tools program package. The software is provided in the latest respective version on the supplied USB stick. Updates can be downloaded free of charge from the download area of the GHM website .www.ghm-messtechnik.de.

The software can be used for all standard sensors. Special software is available under certain circumstances for customer-specific sensors or for special requirements. In case of uncertainty, contact GHM Sales.

Ordering code

Configuration Interface	ECI-3
(for scope of delivery, see the diagram below)	

Scope of delivery:

- 1. ECI-3 configuration interface
- 2. 1.8 m USB cable
- 3. 500 mm M12x1 extension
- 4. Valve connector adapter
- 5. Adapter K04-05
- 6. SUB stick with driver software
- 7. Carry case
- A mains connector is not included in the scope of delivery.

Accessories:

Members of GHM GROUP: GREISINGER | HONSBERG | Martens | IMTRON | Setto en | VAL.CO

- Simple totalisation
- Simple filling counter with programmable end signal
- Control switchover at present value
- Automatic, dynamic change of display unit and decimal places in the graphics display
- Antivalent outputs
- Simple guided menu via graphics display

Characteristics

The totaliser of the OMNI flow rate system enables a totalisation or measurement of consumption for all HONSBERG device families (for fluids and gases) with which the OMNI system is compatible; this is independent of the input signal, pulse or analogue input, and of the measurement process.

Simple filling control is also possible. Here, the counter can be set to count upwards or downwards.

When the preset point is reached, a switching signal is emitted which is available in antivalent form to two outputs.

Resetting can be carried out by means of a signal input or also by a programming ring.

The state of the counter is indicated in an LCD display with only four digits. Here, the number of decimal places and the unit displayed is continuously matched to the current state of the counter. In this case, the smallest value which can be displayed is 0.001 ml (= 1 μ l), and the largest is 9999 m³. The counter therefore has 13 places, of which the four most significant are displayed at any one time. The display resolution at all times is therefore at least 1 per thousand of the displayed value, or better, and this generally exceeds the accuracy of the counter are in that case irrelevant to the accuracy of the measurement.

The automatic dynamic changeover of units in the display in relation to the state of the counter makes the value easy to read in spite of a display with only four digits. In addition, user configuration of the counter is unnecessary.

In addition to the totalised value, the present flow rate can be displayed.

Technical data

Counter range 0.000 ml to 9999 m³ with automatic setting of the decimal places and of the applicable unit.
--

Switching signal outputs (Pin 4 + 5)	2 x pushpull output, max. 100 mA, resistant to short circuits and polarity reversal, antivalent states, configurable on the device as a wipe or edge signal
Counter reset signal (Pin 2)	Input 1830 V resistant to short circuits and reversed polarity PIN 2, wiper signal, positive or negative edge can be selected locally

Wiring

Before the connecting the supply voltage, it must be ensured that this corresponds with the data sheet! The use of shielded cabling is recommended

Sensor connection to OMNI-C-TA, see dimensions.

pi-ho-sm-flow-calorimetry_e V1.00-01

Handling and operation

Installation

For assembly, please observe the handling instructions for the different device versions.

After assembly, it is possible to move the sensor head to the most optimal reading position opposite the sensor part using its rotating function.

Programming

On the display, the counter indicates the state of the totaliser as a value and unit. The units ml, L, m^3 are set automatically.

For operation as a totaliser, no configuration by the user is necessary.

To use the other functions, configuration may be required. This is carried out using the programming ring located on the device.

The annular gap of the programming ring can be turned to positions 1 and 2. The following actions are possible:

Set to 1 = continue (STEP) Set to 2 = modify (PROG)

Neutral position between 1 and 2

The ring can be removed to act as a key, or turned through 180 $^\circ$ and replaced to create a programming protector.

Operation is by dialogue with the display messages, which makes its use very simple.

The control display of the present flow rate depends on the metering range of the selected flow transmitter, and has already been set appropriately in the factory (ml/min, l/min, l/h, m³/h). It is activated by turning the ring to position 1

After 10 seconds, the display automatically returns to the totaliser mode.

For operation as a preset counter, the following must be set:

- 1. The preset point
- The type of output signal ("Preset has been reached"): Signal edge / wiper pulse width of the wiper pulse, if required
- 3. The unit of the preset point:

(ml, litre, m³).

Starting from the normal display (total and unit), if 1 (Step) is selected repeatedly, then the counter shows the following information:

- Normal display is total and unit (e.g. litre)
- Display of present value (e.g. l/min)
- Preset point incl. type of switching output.
- Code

The code gives access to various input levels into which parameters can be entered (so that this does not occur inadvertently, the code must be entered!).

Code 111:

- Gate time (available only for sensors which transmit frequency)
- Filter time
- Direction of count (pos / neg)
- Unit for switching value reset point
- Decimal place for switching value / reset point
- Switching type for switching value (edge / wiper signal)
- Pulse duration (for wiper signal)
- Reset method (manual / via signal)

Code 100:

• Manual reset for totaliser

The detailed flow chart for operation is available in the "Operating instructions for OMNI-C".

Combination exar	nples	Gear VHZ
Vortex CF.		
Calorimetric F (separate data sheet)		Dynam XF
Calorimetric FG (separate data sheet)		
Calorimetric FIN		
Magnetic inductive FIS (separate data sheet)		
Piston HD HR MR		
Magnetic inductive MID1		
Panel mounting OMNI-TA (separate data sheet)	6	
Rotor RR		
Turbine RT	× (C)	
Screw VHS		

Gear VHZ	
Dynamic diaphragm XF	0

Members of GHM GROUP: GREISINGER | HONSBERG | Martens | IMTRON | Seltacer | VAL.CO pi-ho-sm-flow-calorimetry_e V1.00-01 37

- Simple totalisation .
- Simple filling counter with programmable end signal .
- Control switchover at present value .
- Automatic, dynamic change of display unit and decimal places in the graphics display
- Antivalent outputs
- Simple guided menu via graphics display

Characteristics

The totaliser of the OMNI flow rate system enables a totalisation or measurement of consumption for all HONSBERG device families (for fluids and gases) with which the OMNI system is compatible; this is independent of the input signal, pulse or analogue input, and of the measurement process.

Simple filling control is also possible. Here, the counter can be set to count upwards or downwards.

When the preset point is reached, a switching signal is emitted which is available in antivalent form to two outputs

Resetting can be carried out by means of a signal input or also by a programming ring.

The state of the counter is indicated in an LCD display with only four digits. Here, the number of decimal places and the unit displayed is continuously matched to the current state of the counter. In this case, the smallest value which can be displayed is 0.001 ml (= 1 µl), and the largest is 9999 m³. The counter therefore has 13 places, of which the four most significant are displayed at any one time. The display resolution at all times is therefore at least 1 per thousand of the displayed value, or better, and this generally exceeds the accuracy of the connected flow transmitter. The nondisplayed digits of the counter are in that case irrelevant to the accuracy of the measurement.

The automatic dynamic changeover of units in the display in relation to the state of the counter makes the value easy to read in spite of a display with only four digits. In addition, user configuration of the counter is unnecessary.

In addition to the totalised value, the present flow rate can be displayed.

Technical data

Switching signal outputs (Pin 4 + 5)	2 x pushpull output, max. 100 mA, resistant to short circuits and polarity reversal, antivalent states, configurable on the device as a wipe or edge signal
Counter reset signal (Pin 2)	Input 1830 V resistant to short circuits and reversed polarity PIN 2, wiper signal, positive or negative edge can be selected locally

Wiring

Before the connecting the supply voltage, it must be ensured that this corresponds with the data sheet! The use of shielded cabling is recommended

Sensor connection to OMNI-C-TA, see dimensions.

Members of GHM GROUP: GREISINGER | HONSBERG | Martens | IMTRON | Setto en | VAL.CO

Momentary value indicator, transmitter and meter OMNI-C1 electronics

Counter for flow transmitters: Piston

- Dynamic diaphragm
- Rotor
- Turbine
- Gear
- Screw
- MID
- Vortex
- Momentary value indicator and totalisation .
- Pulse output with adjustable pulse per volume
- Antivalent outputs
- Analogue output of the momentary value
- Simple guided menu via graphics display

Characteristics

The local OMNI-C1 electronics offers a momentary value indicator and a totalisation of the flow rate quantity.

The momentary value is output at the analogue output as a 4..20 mA signal (or optionally as a 0..10 V signal).

In addition, the electronics has a pulse output, which outputs a pulse after a preset quantity with a duration of 36 ms. The pulse is available at two switching outputs in anitvalent form.

The primary displayed value is the flow rate. Using the programming ring, you can temporarily switch to the totalisation.

The state of the totalisation is indicated in an LCD display with only four digits. Here, the number of decimal places and the unit displayed is continuously matched to the current state of the counter. In this case, the smallest value which can be displayed is 0.001 ml (= 1 µl), and the largest is 9999 m³. The counter therefore has 13 places, of which the four most significant are displayed at any one time. The display resolution at all times is therefore at least 1 per thousand of the displayed value, or better, and this generally exceeds the accuracy of the connected flow transmitter. The nondisplayed digits of the counter are in that case irrelevant to the accuracy of the measurement.

The automatic dynamic changeover of units in the display in relation to the state of the counter makes the value easy to read in spite of a display with only four digits. In addition, user configuration of the counter is unnecessary.

Instead of the counter option C1 the counter option C is available (see corresponding datasheet). It offers a totalizer with adjustable preset value and external reset. This allows to realize a filling control application for example. Additionally the actual flow rate value can be displayed, however without an analog output.

Technical data

Counter range	0.000 ml to 9999 m ³ with automatic setting of the decimal places and of the applicable unit
Pulse outputs (Pin 4 + 5)	2 x pushpull output, max. 100 mA, resistant to short circuits and polarity reversal, antivalent statuses, pulse width 36 ms

Wiring

Connection example: PNP NPN

Plug connector M12x1

Before the electrical installation, it must be ensured that the supply voltage corresponds to the data sheet.

The use of shielded cabling is recommended.

Counter C:

Members of GHM GROUP: GREISINGER | HONSBERG | Martens | IMTRON | Setto en | VAL.CO pi-ho-sm-flow-calorimetry_e V1.00-01 39

Installation

For assembly, please observe the handling instructions for the different device versions.

After assembly, it is possible to move the sensor head to the most optimal reading position opposite the sensor part using its rotating function.

Programming

The resetting of the meter to zero takes place through the programming.

The stainless steel case has a hardened non-scratch mineral glass pane. It is operated by a programming ring fitted with a magnet, so there is no need to open the operating controls housing, and its leakproofness is permanently ensured.

By turning the ring to right or left, it is simple to modify the parameters (e.g. switching point, hysteresis...). To protect from unintended programming, it can be removed, turned through 180 $^{\circ}$ and replaced, or completely removed, thus acting as a key.

On the display, the meter indicates the current flow rate as a value and unit. For this purpose, no adjustments by the user are necessary.

To use the other functions, configuration may be required. This is carried out using the programming ring located on the device.

The annular gap of the programming ring can be turned to positions 1 and 2. The following actions are possible:

Set to 1 = continue (STEP) Set to 2 = modify (PROG)

Neutral position between 1 and 2

The ring can be removed to act as a key, or turned through 180 ° and replaced to create a programming protector.

Operation is by dialogue with the display messages, which makes its use very simple.

Rotating the ring once to Pos. 1 displays the totaliser status. In the process, the unit is automatically set to the quantity already counted.

After 10 seconds, the display automatically returns to the momentary value mode.

If the ring is turned to position 1 again while the totaliser status is shown, the code input is reached.

The code gives access to various input levels into which parameters can be changed (so that this does not occur inadvertently, the code must be entered!).

Reset for totaliser	
Code 111:	
Filter	Enables the input of a filter time in multiple levels
	The filter time describes the time after which a volatile change in flow occurs until the display value has adopted the new value
PIsUnit	Enables the input of the unit of the pulse volume (pulse per volume), e.g. cm ³ , Litre, m ³
PisVal	Enables the input of the meter value of the pulse flow (09999)
Output	Enables switching of the analogue output between 020 mA and 420 mA (optionally (010 V and 210 V)
4 mA	Defines the momentary value at which 4 mA should be output
20 mA	Defines the momentary value at which

20 mA should be output

Code 100:

IONSBE

O Member of GHM GROUP

Members of GHM GROUP: GREISINGER I HONSBERG I Martens I IMTRON I /Jeltacetta I VAL.CO

	1/47			
	VIIZ	0		
0	Dynamic diaphragm XF			
67				
a ()	_			
		Image: Mex. Image: Mex. <		

Members of GHM GROUP: GREISINGER | HONSBERG | Martens | IMTRON | Seltacer | VAL.CO pi-ho-sm-flow-calorimetry_e V1.00-01 41

Filter

The HONSBERG filters are offered for the protection of the devices from dirt or as independent components for coarse and fine filtration of liquids.

For more information, see additional product information.

T-piece TS-2

For system fastener Ø13.2 examples: OMNI-F / FLEX-F OMNI-T / FLEX-T ETS-...K013

Characteristics

T-pieces for direct installation in pipework with G - female thread in the material brass or stainless steel.

Technical data

DN 10 - 50
female thread G ³ / ₈ G 2
PN 25
CW617N nickelled or 1.4305
see table

Dimensions and weights

	Туре	G	н	Х	Ød	ØD	SWAF	Weight ka
	TS-2M010	G ³ / ₈	28.0	10	12	26	19	0.15
	TS-2M015	G ¹ / ₂			13			0.12
∢	TS-2M020	G ³ / ₄	29.5	12	20	32	29	0.16
L L	TS-2M025	G 1	33.0		25	39	36	0.20
цщ	TS-2M032	G 1 ¹ / ₄	37.5		32	46	44	0.23
	TS-2M040	G 1 ¹ / ₂	40.5		40	55	53	0.33
	TS-2M050	G 2	49.5		50	70	68	0.56
	TS-2K010	G ³ / ₈	28.0	10	12	-	27	0.20
	TS-2K015	G ¹ / ₂			13			0.18
ш	TS-2K020	G ³ / ₄	29.5	12	20		30	0.16
E	TS-2K025	G 1	33.5		25		38	0.25
ц	TS-2K032	G 1 ¹ / ₄	37.5		32	7	46	0.32
	TS-2K040	G 1 ¹ / ₂	40.5		40		55	0.45
	TS-2K050	G 2	49.5		50		70	0.75

Ordering code

1.	Connection						
	2 for temperature sensor and calorimetric flowsensors using for liquid Media with system fastener Ø13.2						
2.	Construc	tion material					
	Μ	nickelled brass					
	K stainless steel						
3.	Nominal width						
	010	DN 10 - G ³ / ₈					
	015	DN 15 - G ¹ / ₂					
	020 DN 20 - G ³ / ₄						
	025 DN 25 - G 1						
	032	DN 40 - G 1 ¹ / ₄					
	040	DN 40 - G 1 ¹ / ₂					
	050	DN 50 - G 2					

Members of GHM GROUP: GREISINGER | HONSBERG | Martens | IMTRON | Seltacer | VAL.CO

T-piece TS-3

For devises with plug-in sensor Ø12 examples: OMNI-F / FLEX-F EFKS / EFK2

Characteristics

T-pieces for direct installation in pipework with G - female thread in the material brass or stainless steel.

Technical data

Nominal width	DN 10 - 50
Process	female thread G ³ / ₈ G 2
connection	
Pressure	PN 25
Materials	CW617N nickelled or 1.4305
medium-contact	
Weight	see table

Form A Form B G3/4A 60° Ø18 Ø14.3 π 00 pa 0 SW/AF 6kt SW AF hexagon/ 50

HONSBERG

O Member of GHM GROUP

Dimensions and weights

	Туре	G	Н	X	Ød	ØD	SWAF	6 kt SW AF hexagon	Weight kg
	TS-3M015	G ¹ / ₂	28.0	10	13	26	19	-	0.12
	TS-3M020	G ³ / ₄	29.5	12	20	32	29		0.16
E	TS-3M025	G 1	33.0		25	39	36		0.20
For	TS-3M032	G 1 ¹ / ₄	37.5		32	46	44		0.23
	TS-3M040	G 1 ¹ / ₂	40.5		40	55	53		0.33
	TS-3M050	G 2	49.5		50	70	68		0.56
	TS-3K015	G ¹ / ₂	28.0	10	13			27	0.18
_	TS-3K020	G ³ / ₄	29.5	12	20		-	30	0.16
E	TS-3K025	G 1	33.5		25			38	0.25
For	TS-3K032	G 1 ¹ / ₄	37.5		32			46	0.32
	TS-3K040	G 1 ¹ / ₂	40.5		40]		55	0.45
	TS-3K050	G 2	49.5		50			70	0.75

Ordering code

1.	Connection						
	2	Ffor calorimetric plug-in sensors Ø12 for gaseous and liquid media					
2.	Construction material						
	M	nickelled brass					
	К	stainless steel					
3.	Nominal	inal width					
	010	DN 10 - G ³ / ₈					
	015	DN 15 - G ¹ / ₂					
	020	DN 20 - G ³ / ₄					
	025	DN 25 - G 1					
	032	DN 40 - G 1 ¹ / ₄					
	040	DN 40 - G 1 ¹ / ₂					
	050	DN 50 - G 2					

Welded / soldered nozzles

For paddle systems

Ordering code

	1. 2.	
SL	1 -	
1.	Connecti	on
	1	for paddle system
2	Material	

	1	for paddle systems
2.	Material	
	М	brass
	K	stainless steel

For system connection Ø13,2

Ordering code

1.	Connection		
	2	2 for system connection Ø13,2	
2.	Material		
	Μ	brass	
	K	stainless steel	

Assurance-Set

For securing 12 mm sensor in its bore. Consisting of: Flap, plastic disc, chain, screw

J

Weld-on adapter

For crimp connector ADQ-012G015A.

Ordering code

AD	1. 2. 3. 4. 5. ADG- 015 G S 026 K			
1.	Connecti	on size		
	015	G ¹ / ₂ A		
2.	Process	Process connection		
	G	female thread		
3.	Installatio	Installation		
	S	weld-on adapter		
4.	Welded-on nozzle			
	026	26 mm		
5.	Construction material			
	К	stainless steel 1.4571		

Crimp connection

For push-in sensors Ø12 mm

Ordering code

Metal

	1.	2.	3.	4.	5.	
ADQ-	012	G	015	Α		

1.	Connecti	Connection size			
	012	for sensors Ø12 mm			
2.	Process	connection			
	G	thread G			
3.	Connection size				
	015	G ¹ / ₂ A			
4.	Process connection				
	A	male thread			
5.	Construction material				
	К	stainless steel 1.4571			
	М	brass			

Plastic

	1.	2.	3.	4.	5.
ADQ-	012	Μ	020	Α	P1

1.	Connecti	Connection size		
	012	for sensors Ø12 mm		
2.	Process	connection		
	Μ	metric thread		
3.	Connection size			
	020	M20x1.5		
4.	Process connection			
	А	male thread		
5.	Construction material			
	P1	plastic PA66		

Flange

For crimp-on threaded connection ADQ-012M20A.

Ord	ering cod	le	
Plast	ic		
ADI	1. VI- 020	2. 3. 4. F 054 P2	
1.	Connecti	on size	
	020	M20x1.5	
2.	Process connection		
	F	flange	
3.	Flange si	ze	
	054	54 mm	
4.	Construc	tion material	
	P2	plastic POM black	
2. 3. 4.	020 Process of F Flange si 054 Construc P2	M20x1.5 connection flange ze 54 mm tion material plastic POM black	

Product information Flow - Calorimetry

Round plug connector 4-pin

1	••	brown
2	••	white
3	••	blue
4		black

Orde	Drdering code				
Pacl	Packaged 1. 2. 3. 4. 5.				
Κ	04 Pl	J- O= Option			
1.	Number of	pins			
	04	4-polig			
2.	Cable mate	rial			
	PU-	PUR			
3.	Cable lengt	th			
	02	2 m			
	05	5 m			
	10	10 m			
		Others on request			
4.	Shielding				
	S	shielding applied to coupling			
	U	unshielded			
	N O	shielding not applied to coupling			
5.	Steckerabg	ang			
	G	straight			
	W	elbow 90 °			

Round plug connector 4 / 5-pin

Ordering code

Self-	Self-assembly			
KB	1. 2.			
1.	Number of	pins		
	04	4-polig		
	05	5-polig		
2.	Steckerabgang			
	G	gerade		
	W	gewinkelt 90 °		

Round plug connector 5-pin

1	••	brown
2		white
3		blue
4	••	black

5 🛶 grey

Ordering code

-				
- Pa	aci	ka	de	0

Packaged					
	1.	2. 3. 4. 5.			
κ	05 -	PU- Q= Option			
1.	Number of pins				
05		5-polig			
2.	Cable material				
PU-		PUR			
3.	Cable length				
	02 2 m				
	05	5 m			
	10	10 m			
		Others on request			
4.	Shielding				
	S	shielding applied to coupling			
	U	unshielded			
	N O	shielding not applied to coupling			
5.	Steckerabgang				
	G	straight			
	W	elbow 90 °			

Members of GHM GROUP: GREISINGER | HONSBERG | Martens | IMTRON | / Jelta = 1 | VAL.CO

Primary Sensors 0..10 V 4..20 mA Frequency

Converter with the same data as the OMNI in situ electronics; but as an external panel-mounting variant with IP 67 housing.

OMNI - Tropical model

This OMNI electronic option should be used where temperatures change quickly, or for external installations (the device is filled with oil, and thus prevents condensate formation in the electronics housing, even under adverse circumstances)

LABO transmitter - Temperature up to 150 °C

All LABO transmitters can be used with electronics positioned in a separate area with media temperatures up to $150 \,^{\circ}$ C.

Members of GHM GROUP: GREISINGER I HONSBERG I Martens I IMTRON I Acta II VAL.CO

Your direct contact to us

) +49 2191 9672-0

info@ghm-group.de

Headquarters

GHM Messtechnik GmbH GHM GROUP CORPORATE Tenter Weg 2-8 42897 Remscheid | GERMANY Phone +49 2191 9672-0 Fax +49 2191 9672-40 info@ghm-group.de www.ghm-group.de

GHM GROUP International

Austria

GHM Messtechnik GmbH Office Austria Breitenseer Str. 76/1/36 1140 Vienna | AUSTRIA Phone +43 660 7335603 a.froestl@ghm-messtechnik.de www.ghm-group.de

France

GHM GROUP France SAS Parc des Pivolles 9 Rue de Catalogne 69150 Décines (Lyon) | FRANCE Phone +33 6 60 32 06 35 contact@ghm-group.fr www.ghm-group.fr

Netherlands

GHM Meettechniek BV Zeeltweg 30 3755 KA Eemnes NETHERLANDS Phone +31 35 53805-40 Fax +31 35 53805-41 info@ghm-nl.com www.ghm-nl.com

Center of Competence

GHM Messtechnik GmbH GHM GROUP – Greisinger Hans-Sachs-Straße 26 93128 Regenstauf | GERMANY Phone +49 9402 9383-52 Fax +49 9402 9383-33 info@greisinger.de www.greisinger.de

GHM Messtechnik GmbH GHM GROUP – Imtron Carl-Benz-Straße 11 88696 Owingen | GERMANY Phone +49 7551 9290-0 Fax +49 7551 9290-90 info@ghm-group.de www.ghm-group.de

Brazil & Latin America

GHM Messtechnik Do Brasil Ltda Av. José de Souza Campos, 1073, cj 06 | Campinas, SP 13025 320 | BRAZIL Phone +55 19 98275 0069 info@grupoghm.com.br

India

GHM Messtechnik India Pvt Ldt. 209 | Udyog Bhavan Sonowala Road | Gregaon (E) Mumbai - 400 063 | INDIA Phone +91 22 40236235 info@ghmgroup.in www.ghmgroup.in

South Africa

GHM Messtechnik SA (Pty) Ltd 16 Olivier Street Verwoerdpark, Alberton 1453 SOUTH AFRICA Phone +27 74 4590040 j.grobler@ghm-sa.co.za GHM Messtechnik GmbH GHM GROUP – Honsberg Tenter Weg 2–8 42897 Remscheid | GERMANY Phone +49 2191 9672-0 Fax +49 2191 9672-40 info@ghm-group.de www.ghm-group.de

Delta OHM S.r.l. a socio unico GHM GROUP – Delta OHM Via Marconi 5 35030 Caselle di Selvazzano Padova (PD) | ITALY Phone +39 049 8977150 info@deltaohm.com www.deltaohm.com

Czech Republic / Slovakia

GHM Greisinger s.r.o. Ovci hajek 2/2153 158 00 Prague 5 Nove Butovice | CZECH REPUBLIC Phone +420 251 613828 Fax +420 251 612607 info@greisinger.cz www.greisinger.cz

Italy

Sales Greisinger & Delta OHM GHM GROUP – Delta OHM Via Marconi 5 35030 Caselle di Selvazzano Padova (PD) | ITALY Phone +39 049 8977150 info@deltaohm.com GHM Messtechnik GmbH GHM GROUP – Martens Kiebitzhörn 18 22885 Barsbüttel | GERMANY Phone +49 40 67073-0 Fax +49 40 67073-288 info@ghm-group.de www.ghm-group.de

Valco srl GHM GROUP – Val.co Via Rovereto 9/11 20014 S. Ilario di Nerviano Milano (MI) | ITALY Phone +39 0331 53 59 20 valco@valco.it www.valco.it

Denmark

GHM Maaleteknik ApS Maarslet Byvej 2 8320 Maarslet | DENMARK Phone +45 646492-00 Fax +45 646492-01 info@ghm.dk www.ghm.dk

Italy

Sales Honsberg, Martens, Val.co GHM GROUP – Val.co Via Rovereto 9/11 20014 S. Ilario di Nerviano Milano (MI) | ITALY Phone +39 0331 53 59 20 alessandro.perego@valco.it

